Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T12:33:14.575Z Has data issue: false hasContentIssue false

Relationship between diatoms in surface sediments of the Atlantic Ocean and the biological and physical oceanography of overlying waters

Published online by Cambridge University Press:  08 February 2016

Nancy G. Maynard*
Affiliation:
CLIMAP. Division of Engineering and Applied Physics, Harvard University; 40 Oxford Street, Cambridge, Massachusetts 02138

Abstract

The number of diatom valves and fragments per gram of surface sediment in the Atlantic Ocean accurately reflects diatom abundance in the overlying waters, without any evidence of significant lateral drift during settling to the sea bottom. The distribution pattern of the number of resting spores per gram is similar to that for the whole and fragmented diatom valves. Fresh water diatoms and opal phytoliths are abundant in the sediments off the west coast of Africa where they have been deposited by the Trade Winds.

Despite the relatively small number of core tops analyzed, the abundance and distribution patterns of diatoms in the sediments exhibit striking similarities to the patterns of primary productivity, phosphates, and annual production of silica in suspension in surface waters. Areas with high phosphate values and primary productivity and, therefore, areas of upwelling can be inferred from the quantitative distribution of diatoms in the sediments. Q-mode factor analysis, based on the abundance of forty-two species in thirty-seven core tops, produced six diatom species assemblages whose distributions provide additional information on the positions of certain water masses and major currents.

Since the data on the quantitative distribution of diatom valves as well as on the diatom assemblages in the sediments of the Atlantic Ocean today allow prediction of certain water mass characteristics and circulation patterns of the overlying waters, they therefore, permit the reconstruction of paleoceanographic circulation patterns in ancient Atlantic Oceans, using the diatom distribution in sediments from dated horizons.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arrhenius, G. O. S. 1959. Sedimentation on the ocean floor. pp. 124. In: Abelson, P. H., ed. Researches in Geochemistry. John Wiley and Sons; New York, N. Y.Google Scholar
Baker, G. 1959. Opal phytoliths in some Victorian soils and “red rain” residues. Aust. J. Bot. 7:6486.CrossRefGoogle Scholar
, A. W. H. and Tolderlund, D. S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. pp. 105149. In: Funnell, B. M. and Riedel, W. R., eds. The Micropaleontology of Oceans. Cambridge Univ. Press; Cambridge.Google Scholar
Berger, W. H. 1970. Biogenous deep-sea sediments: fraction by deep-sea circulation. Geol. Soc. Am. Bull. 81:13851402.CrossRefGoogle Scholar
Bramlette, M. N. 1961. Pelagic sediments. pp. 345366. In: Sears, M., ed. Oceanography. Am. Assoc. for the Adv. of Sci., Washington, D.C.Google Scholar
Calvert, S. E. 1966. Accumulation of diatomaceous silica in the sediments of the Gulf of California. Geol. Soc. Am. Bull. 77:569596.CrossRefGoogle Scholar
Calvert, S. E. 1974. Deposition and diagenesis of silica in marine sediments. pp. 273300. In: Hsu, K. J. and Jenkyns, H. C., eds. Pelagic Sediments on Land and under the Sea. Blackwell Sci. Publ.; Oxford.Google Scholar
Casey, R. E. 1971. Radiolarians as indicators of past and present water masses. pp. 331342. Funnell, B. M. and Riedel, R. W., eds. The Micropaleontology of Oceans. Cambridge Univ. Press; Cambridge.Google Scholar
Castracane, A. F. 1886. Report on the Diatomaceae Collected by the H. M. S. Challenger. Report on the Scientific Results of the Voyage of H. M. S. Challenger during the Years 1873–76. Botany, vol. 2., pp. 1178. Challenger Office; G. B.Google Scholar
Cleve-Euler, A. 1951. Die diatomeen von Schweden und Finnland. Kongliga Svenska Vetenskapsakademiens Handligar (4th Series, Part 1). 2:1163.Google Scholar
Corcoran, E. F. and Mahnken, C. V. W. 1966. Productivity of the tropical Atlantic Ocean. pp. 5767. Proc. Symp. on Oceanogr. and Fish. Resour. of Trop. Atlantic, Abidjan, Ivory Coast. UNESCO; Paris.Google Scholar
Correns, C. W. 1939. Pelagic sediments of the North Atlantic Ocean. pp. 373395. In: Trask, P. D., ed. Recent Marine Sediments. Am. Assoc. of Pet. Geol.; Tulsa, Okla.Google Scholar
Crosby, L. H. and Wood, E. J. 1958. Studies on Australian and New Zealand diatoms I. Trans. R. Soc. N. Z. 85:483530.Google Scholar
Cupp, E. E. 1943. Marine plankton diatoms of the west coast of North America. Bull. Scripps Inst. Oceanogr. Univ. Calif. 5:1238.Google Scholar
Defant, A. 1961. Physical Oceanography. 2 Vols. Pergamon Press; New York.Google Scholar
Delany, A. C., Parkin, D. W., Griffin, J. J., Goldberg, E. D., and Reimann, B. E. F. 1967. Airborne dust collected at Barbados. Geochim. et Cosmochim. Acta. 31:885909.CrossRefGoogle Scholar
Dietrich, G. 1963. General Oceanography. 588 pp. Interscience; New York and London.Google Scholar
Fager, E. W. and McGowan, J. A. 1963. Zooplankton species groups in the North Pacific. Science. 140:453460.CrossRefGoogle ScholarPubMed
Fleming, R. H. 1967. General features of the oceans. In: Hedgepeth, J. W., ed. Treatise on Marine Ecology and Paleoecology, Vol. I: Ecology. Geol. Soc. Am. Mem. 67:87107.Google Scholar
Folger, D. W. 1970. Wind transport of land-derived mineral, biogenic and industrial matter over the North Atlantic. Deep-Sea Res. 17:337352.Google Scholar
Folger, D. W., Burckle, L. H., and Heezen, B. C. 1967. Opal phytoliths in a North Atlantic dust fall. Science. 155:12431244.CrossRefGoogle Scholar
Fryxell, G. A. and Hasle, G. R.Thalassiosira eccentrica (Ehrenb.) Cleve, T. symmetrica sp. nov. and some related centric diatoms. J. Phycol. 8:297317.CrossRefGoogle Scholar
Gardner, J. V. 1974. Equatorial Atlantic surface circulation and sea surface temperature responses to late Pleistocene climatic changes. p. 25. (Abstr.) Symp. Mar. Plankton and Sediments, and Third Planktonic Conf. Kiel, W. Germany.Google Scholar
Gessner, F. 1959. Hydrobotanik: Die Physiologischen Grundlagen der Pflanzenverbreitung im Wasser, vol. II: Stoffhaushalt. VEB Deutscher Verlag Wiss; Berlin.Google Scholar
Goll, R. M. and Bjorklund, K. R. 1971. Radiolaria in surface sediments of the North Atlantic Ocean. Micropaleontology. 17:434454.CrossRefGoogle Scholar
Graham, H. W. and Bronikowsky, N. 1944. The genus Ceratium in the Pacific and North Atlantic Oceans. Publ. Carnegie Inst. 565:1209.Google Scholar
Gross, F. 1937. The life history of some marine plankton diatoms. Philos. Trans. Roy Soc. B-228:147.Google Scholar
Hajos, M. 1970. The Mediterranean diatoms. Initial Rep. Deep-Sea Drilling Proj. 13:944970.Google Scholar
Hargraves, P. E. 1968. Species composition and distribution of new plankton diatoms in the Pacific sector of the Antarctic Ocean. PhD. dissertation, The College of William and Mary, Va. Unpublished.Google Scholar
Hart, T. J. 1934. On the phytoplankton of the southwest Atlantic and the Bellinghausen Sea. Discovery Rep. 8:1268.Google Scholar
Hart, T. J. 1942. Phytoplankton periodicity in Antarctic surface waters. Discovery Rep. 21:1356.Google Scholar
Hasle, G. R. 1972. Fragilariopsis Hustedt as a section of the genus Nitzschia Hassal. pp. 111119. In: Simonsen, R., ed. First Symp. on Recent and Fossil Mar. Diatoms. Cramer; Germany.Google Scholar
Hasle, G. R. and de Mendiola, B. R. 1967. The fine structure of some Thallassionema and Thalassiothrix species. Phycologia. 6:107125.CrossRefGoogle Scholar
Heezen, B. C. and Hollister, C. D. 1971. The Face of the Deep. 659 pp. Oxford Univ. Press; New York, N. Y.Google Scholar
Hendey, N. I. 1937. The Plankton diatoms of the southern seas. Discovery Rep. 16:151364.Google Scholar
Hendey, N. I. 1964. An Introductory Account of the smaller Algae of British Coastal Waters, Part 5: Bacillariophyceae (diatoms). 317 pp. Fish. Invest. Series IV. Her Majesty's Stationery Off.; London.Google Scholar
Hentschel, E. 1936. Allgemeine biologie des Sudatlantischen Oceans. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs und Vermessungsschiff Meteor, 1925–1927. Band 11. Walter de Gryter; Berlin and Leipzig.Google Scholar
Hustedt, F. 1927–1964. Die Kieselalgen. In: Rabenhorst, L., ed. Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, Band 7. Eduard Kummer; Leipzig.Google Scholar
Imbrie, J. and Kipp, N. 1971. A new micropaleontology method for quantitive paleoclimatology: application to a late Pleistocene Caribbean core. pp. 71181. In: Turekian, K. K., ed. The Late Cenozoic Glacial Ages. Yale Univ. Press; New Haven. Conn.Google Scholar
Imbrie, J. and Van Andel, T. H. 1964. Vector Analysis of heavy-mineral data. Bull. Geol. Soc. Am. 75:1131.CrossRefGoogle Scholar
Johnson, M. W. and Brinton, E. 1963. Biological species, water masses and currents. pp. 381414. Hill, M. N., ed. The Sea. Interscience; New York, N. Y.Google Scholar
Jousé, A. P. 1957. Diatoms in the surface layer of the sediments in the Sea of Okhotsk. Trudy Inst. Okeanol. 22:164220.Google Scholar
Jousé, A. P. 1962. Stratigraphic and paleogeography of the northern part of the Pacific Ocean. Izd-vo. 1258.Google Scholar
Kanaya, T. 1957. Eocene diatom assemblages from the Kellogg and Sidney Shales, Mt. Diablo area, Calif. Sci. Rep. Tohoku Univ. 28:27124.Google Scholar
Kanaya, T. 1961. Characteristics and distribution of diatom thanatocoenoses in Pacific deep-sea cores. pp. 375376. Tenth Pacific Sci. Congr., Hawaii.Google Scholar
Kanaya, T. and Komizumi, I. 1966. Interpretation of diatom thanatocoenoses from the north Pacific applied to a study of core V20–130. Sci. Rep. Tohoku Univ. 37:89130.Google Scholar
Kipp, N. G., McIntyre, A., Balsam, W. L., Cooley, J., Gaudreau, D., Krause, C., and Winsor, M. 1974. South Atlantic glacial circulation patterns: evidence from planktonic foraminifera. p. 42. (Abstr.) Symp. Mar. Plankton and Sediments, and Third Planktonic Conf. Kiel, W. Germany.Google Scholar
Koblentz-Mishke, O. J., Volkovinsky, U. V., and Kabanova, J. C. 1970. Plankton primary production of the world ocean. pp. 183193. In: Wooster, W. S., ed. Scientific Exploration of the South Pacific. Natl. Acad. Sci.; Washington, D. C.Google Scholar
Koizumi, I. 1968. Tertiary diatom flora of Oga Peninsula, Akita Prefecture, Northeast Japan. Sci. Tohoku Univ. 40:171240.Google Scholar
Koizumi, I. 1971. The late Cenozoic diatoms of sites 183–193, leg 19. Initial Rep., Deep-Sea Drilling Proj. 19:805856.Google Scholar
Kolbe, R. W. 1954. Diatoms from equatorial Pacific cores. Rep. of the Swed. Deep-Sea Exped., 1947–1948. 6:149.Google Scholar
Kolbe, R. W. 1955. Sediment cores from the North Atlantic Ocean. Rep. of the Swed. Deep-Sea Exped., 1947–1948. 7:151184.Google Scholar
Kolbe, R. W. 1957a. Diatoms from equatorial Indian Ocean cores. Rep. of the Swed. Deep-Sea Exped, 1947–1948. 9:150.Google Scholar
Kolbe, R. W. 1957b. Fresh water diatoms from Atlantic deep-sea sediments. Science. 126:10531056.CrossRefGoogle ScholarPubMed
Kozlova, O. G. 1966. Diatoms of the Indian and Pacific Sectors of the Antarctic. In: Oliver, B., ed. 191 pp. Transl. by S. Hoffmann, Israel Program for Sci. Transl. U.S. Clearinghouse for Fed. Sci. and Tech. Inf.; Springfield, Va.Google Scholar
Kozlova, O. G., and Mukhina, V. V. 1967. Diatoms and silico-flagellates in suspension and floor sediments of the Pacific Ocean. Int. Geol. Rev. 9:13221342.CrossRefGoogle Scholar
Krumbein, W. C. and Graybill, F. A. 1965. An Introduction to statistical Models in Geology. 475 pp. McGraw-Hill; New York, N. Y.Google Scholar
Lebour, M. 1930. The Planktonic Diatoms of Northern Seas. 244 pp. The Ray Soc; London.Google Scholar
Lewin, J. C. 1961. The dissolution of silica from diatom walls. Geochim. et Cosmochim. Acta. 21:182198.CrossRefGoogle Scholar
Lisitzin, A. P. 1971. Distribution of siliceous microfossils in suspension and bottom sediments. pp. 173195. In: Funnell, B. M. and Riedel, N. R., eds. The Micropaleontology of Oceans. Cambridge Univ. Press; Cambridge.Google Scholar
Lisitzin, A. P. 1972. Sedimentation in the World Ocean. Soc. Econ. Paleontol. and Mineral. Spec. Publ. 17:1218.Google Scholar
Lisitzin, A. P., Belyayer, Y. I., Bogdanov, Y. A., and Bogoyavlensky, A. N. 1966. Distribution relationships and forms of silica suspended in the waters of the World Ocean. In: Strakhov, N. M., ed. Geochemistry of Silica. Moscow Publ. House Akad. Nau. SSSR; Moscow. 1:3764.Google Scholar
Lohman, K. E. 1941. Diatomaceae. pp. 5585. In: Geology and Biology of North Atlantic Deep-Sea Cores between Newfoundland and Ireland. U.S. Geol. Surv.; Washington, D.C.Google Scholar
Luz, B. 1973. Stratigraphic and paleoclimatic analysis of Late Pleistocene tropical southeast Pacific cores. Quaternary Res. 3:5672.CrossRefGoogle Scholar
Manson, V. and Imbrie, J. 1964. Fortran program for factor and vector analysis of geologic data using an IBM 7090 or 7094 computer system. Kans. Geol. Surv. Comput. Contrib. Spec. Publ. 13:1.Google Scholar
Maynard, N. G. (in preparation). Distribution of fresh water diatoms and opal phytoliths in the surface sediments of the Atlantic Ocean.Google Scholar
Maynard, N. G. (in preparation). Phosphates in the surface waters of the Atlantic Ocean.Google Scholar
Maynard, N. G. and Kipp, N. G. 1974. Ecology and paleoecology of diatoms in the Atlantic Ocean—preliminary report. p. 50. (Abstr.) Symp. Mar. Plankton and Sediments, and Third Planktonic Conf. Kiel, W. Germany.Google Scholar
Maynard, N. G. and Kipp, N. G. 1975. The Atlantic Ocean 18,000 years BP as reflected by the diatom distribution. Ninth Int. Sedimentol. Congr. Nice, France. Theme 1:120124.Google Scholar
McDonald, W. F. 1938. Atlas of Climatic Charts of the Oceans. U.S. Dept. of Agric, Weather Bur., No. 1247.Google Scholar
McIntyre, A. 1967. Coccoliths as paleoclimatic indicators of Pleistocene glaciation. Science. 158:13141317.CrossRefGoogle ScholarPubMed
McIntyre, A., , A., Biscaye, P., Burckle, L., Gardner, J., Geitzenauer, K., Goll, R., Kellogg, T., Prell, W., Roche, M., Imbrie, J., Kipp, N., Ruddiman, W., Moore, T., and Heath, R. 1972a. The glacial North Atlantic 17,000 years ago: paleoisotherm and oceanographic maps derived from floral-faunal parameters by CLIMAP. Geol. Soc. Am. Abstr. with Program. 4:590591.Google Scholar
McIntyre, A., Ruddiman, W. F., and Jantzen, R. 1972b. Southward penetrations of the North Atlantic polar front: faunal and floral evidence of large-scale surface water mass movements over the last 225,000 years. Deep-Sea Res. 19:6177.Google Scholar
McIntyre, A., Ruddiman, W. F., and Sblendorio Levy, J. 1974. Polar front dynamics through a glacial cycle in the North Atlantic. p. 51. (Abstr.) Symp. Mar. Plankton and sediments, and Third Planktonic Conf. Kiel, W. Germany.Google Scholar
McIntyre, A., and Kipp, N. G., with , A., Crowley, T., Kellogg, T., Gardner, J., Prell, W., and Ruddiman, W. F. (in press.) The glacial North Atlantic 18,000 years ago: a CLIMAP reconstruction. Geol. Soc. Am. Mem. 145.Google Scholar
Molfino, B., Thierstein, H., and McIntyre, A. 1974. South Atlantic paleoclimatic coccolith studies. p. 52. (Abstr.) Symp. Mar. Plankton and Sediments, and Third Planktonic Conf. Kiel, W. Germany.Google Scholar
Moore, H. B. 1931. Muds of the Clyde Sea area. III. Chemical and physical conditions; rate and nature of sedimentation; and fauna. J. Mar. Biol. Assoc. U.K. 17:325358.Google Scholar
Moore, T. C. 1973. Late Pleistocene-Holocene oceanographic changes in the northeastern Pacific. Quaternary Re. 3:99109.CrossRefGoogle Scholar
Paragallo, H. and Paragallo, M. 1965. Diatomees Marines de France. 491 pp. A. Asher and Co.; Amsterdam.Google Scholar
Prospero, J. M. 1968. Atmospheric dust studies on Barbados. Bull. Am. Meteorol. Soc. 49:645652.CrossRefGoogle Scholar
Prospero, J. M., Bonatti, E., and Maynard, N. G. 1968. Continental dust in the atmosphere of the eastern equatorial Pacific. Presented at April, 1968 meeting of Am. Geophys. Union. Washington, D.C.Google Scholar
Prospero, J. M., Bonnatti, E., Schubert, C., and Carlson, T. N. 1970. Dust in the Caribbean atmosphere traced to an African dust storm. Earth and Planet. Sci. Lett. 9:287293.CrossRefGoogle Scholar
Rattray, J. 1890. A revision of the genus Coscinodiscus Ehr. and some allied genera. Proc. R. Soc. Edinburgh. 16:449692.Google Scholar
Raymont, J. E. G. 1963. Plankton and Productivity in the Oceans. 660 pp. The Macmillan Co.; New York, N. Y.Google Scholar
Redfield, A. C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:205221.Google Scholar
Riedel, W. R. 1963. The preserved record: paleontology of pelagic sediments. pp. 866887. In: Hill, M. N., ed. The Sea. Interscience; New York, N.Y.Google Scholar
Ross, D. A. and Riedel, W. R. 1967. Comparison of upper parts of some piston cores with simultaneously collected open-barrel cores. Deep-Sea Res. 14:285294.Google Scholar
Round, F. E. 1965. The Biology of the Algae. 269 pp. Edward Arnold, Ltd.; London.Google Scholar
Ruddiman, W. F. 1968. Historical stability of the Gulf Stream meander belt: foraminiferal evidence. Deep-Sea Res. 15:137148.Google Scholar
Ruddiman, W. F. and McIntyre, A. 1973. Time-transgressive deglacial retreat of polar waters from the North Atlantic Quaternary Res. 3:117130.Google Scholar
Ruddiman, W. F., Tolderman, D. S., and , A. 1970. Forminiferal evidence of a modern warming of the North Atlantic Ocean. Deep-Sea Res. 17:141155.Google Scholar
Ryther, J. H. 1963. Geographic variations in productivity. pp. 347380. In: Hill, M. N., ed. The Sea. Interscience; New York, N. Y.Google Scholar
Sachs, H. M. 1973. North Pacific radiolarian assemblages and their relationship to oceanographic parameters. Quaternary Res. 3:7388.CrossRefGoogle Scholar
Schmidt, A. 1874–1962. Atlas der Diatomaceen-Kunde. Ascherleben; Leipzig.Google Scholar
Schrader, H. J. 1971. Fecal pellets: role in sedimentation of pelagic diatoms. Science. 174:5557.CrossRefGoogle ScholarPubMed
Schrader, H. J. 1972a. Anlosung und Konservation von Diatomeenschalen beim absinken am Beispiel des Landsort-tiefs in der Ostsee. pp. 191216. In: Simonsen, R., ed. First Symposium on Recent and Fossil Marine Diatoms. J. Cramer; Germany.Google Scholar
Schrader, H. J. 1972b. Kieselsaure-skelette in sedimenten des iberomarokkanischen kontinentalrandes und angrenzender tiefseeebenen. Meteor Forschungs Ergenbisse. Reihe C. 8:1036.Google Scholar
Schrader, H. J. 1973. Cenozoic diatoms from the Northeast Pacific, leg 18. Initial Rep. Deep-Sea Drilling Proj. 18:673797.Google Scholar
Semina, G. J. 1958. Relation between phytogeographic zone in the pelagics of the northwestern part of the Pacific Ocean with the distribution of water masses in the region. Trudy Inst. Okeanol. 27:6676.Google Scholar
Semina, G. J. and Jousé, A. P. 1959. Diatoms in biocoenoses of western part of the Bering Sea. Trudy Inst. Okeanol. 30:5267.Google Scholar
Smayda, T. J. 1958. Biogeographical studies of marine phytoplankton. Oikos. 9:158191.CrossRefGoogle Scholar
Smayda, T. J. 1971. Normal and accelerated sinking of phytoplankton in the sea. Mar. Geol. 11:105122.CrossRefGoogle Scholar
Smithson, F. 1958. Grass opal in British soils. J. Soil Sci. 9:147154.CrossRefGoogle Scholar
Stehli, F. G. 1965. Paleontologic technique for defining ancient ocean currents. Science. 148:943946.CrossRefGoogle ScholarPubMed
Streeter, S. S.Bottom water and benthonic foraminifera in the North Atlantic: glacial-interglacial contrasts. Quaternary Res. 3:131141.CrossRefGoogle Scholar
Streeter, S. S., Roche, M. P., and McIntyre, A. (in preparation.) Nutrients of the surface waters of the Atlantic Ocean.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1942. The Oceans. 1087 pp. Prentice-Hall; New York, N. Y.Google Scholar
Van Heurck, H. 1896. A Treatise on the Diatomaceae. Translated by Baxter, Wynne E.558 pp. W. Wesley and Son; London.Google Scholar
Venrick, E. L. 1971. Recurrent groups of diatom species in the North Pacific. Ecology. 52:614625.CrossRefGoogle ScholarPubMed
Walsh, J. J. 1969. A statistical analysis of the phytoplankton community within the Antarctic Convergence. Ph.D. dissertation, Univ. of Miami, Coral Gables, Fla. Unpublished.Google Scholar
Walsh, J. J. 1971. Relative importance of habitat variables in predicting the distribution of phytoplankton at the ecotone of the Antarctic upwelling ecosystems. Ecol. Monogr. 41:291309.CrossRefGoogle Scholar
Williams, D. B. 1971. The distribution of marine dinoflagellates in relation to physical and chemical conditions. pp. 9195. In: Funnell, B. M., and Riedel, W. R., eds. The Micropaleontology of Oceans. Cambridge Univ. Press; Cambridge.Google Scholar
Wimpenny, R. S. 1966. The Plankton of the Sea. 426 pp. American Elsevier; New York, N. Y.Google Scholar
Wiseman, J. D. H. and Hendey, N. E. 1953. The significance and diatom content of a deep-sea floor sample from the neighborhood of the greatest oceanographic depth Deep-Sea Res. 1:4759.Google Scholar
Wood, E. J. F. 1954. Dinoflagellates in the Australia region. Aust. J. Mar. Freshwater Resour. 5:171351.CrossRefGoogle Scholar
Wood, E. J. F. 1965. Marine Microbial Ecology. 243 pp. Chapman and Hall, Ltd.; London.Google Scholar
Wood, E. J. F. 1967. Microbiology of Oceans and Estuaries. 319 pp. Elsevier; Amsterdam.Google Scholar
Wyrtki, K. 1971. Oceanographic Atlas of the International Indian Ocean Expedition. 531 pp. U.S. Gov. Print. Off.; Washington, D. C.Google Scholar
Zhuze, A. P., Kozlova, O. G., and Mukhina, V. V. 1967. Species composition and zonal distribution on the surface layer of Pacific Ocean sediments. Doklady Akademii Nauk, SSSR. 172:11831186.Google Scholar