Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T09:42:40.566Z Has data issue: false hasContentIssue false

Adaptive evolution in Paleozoic coiled cephalopods

Published online by Cambridge University Press:  08 April 2016

Björn Kröger*
Affiliation:
Department of Geological Sciences, Ohio University, Athens, Ohio 45701

Abstract

Coiled cephalopods constitute a major part of the Paleozoic nekton. They emerged in the Early Ordovician but nearly vanished in the Silurian. The Emsian appearance of ammonoids started a story of evolutionary success of coiled cephalopods, which lasted until the end-Permian extinction event. This story is investigated by using a taxonomic database of 1346 species of 253 genera of coiled nautiloids and 1114 genera of ammonoids. The per capita sampling diversities, the Van Valen metrics of origination and extinction, and the probabilities of origination and extinction were calculated at stage intervals. The outcome of these estimations largely reflects the known biotic events of the Paleozoic. The polyphyletic, iterative appearance of coiled cephalopods within this time frame is interpreted to be a process of adaptation to shell-crushing predatory pressure. The evolution of the diversity of coiled nautiloids and ammonoids is strongly correlated within the time intervals. Once established, assemblages of coiled cephalopods are related to changes in sea level. The general trends of decreasing mean (or background) origination and extinction rates during the Paleozoic are interpreted to reflect a successive stabilization of the coiled cephalopod assemblages. Different reproduction strategies in ammonoids and nautiloids apparently resulted in different modes of competition and morphological trends. Significant morphological trends toward a stronger ornamentation and a centrally positioned siphuncle characterize the evolution of Paleozoic nautiloids.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. Kinematics of accretional shell growth, with examples from brachiopods and molluscs. Paleobiology 15:147164.Google Scholar
Adrain, J. M., and Westrop, S. R. 2003. Paleobiodiversity: we need new data. Paleobiology 29:2225.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Arnold, J. M. 1987. Reproduction and embryology of Nautilus. Pp. 353372in Saunders, W. B. and Landman, N. H., eds. Nautilus: the biology and paleobiology of a living fossil. Plenum, New York.Google Scholar
Bambach, R. K. 1990. Late Paleozoic provinciality in the marine realm. In McKerrow, W. S. and Scotese, C. R., eds. Paleozoic palaeogeography and biogeography. Geological Society of London Memoir 12:307323.Google Scholar
Bandel, K. 1988. Operculum and buccal mass of ammonites. Pp. 653678in Wiedmann, J. and Kullmann, J., eds. Cephalopods present and past. Schweizerbart, Stuttgart.Google Scholar
Barnes, C. R., Fortey, R. A., and Williams, S. H. 1996. The pattern of global bio-events during the Ordovician period. Pp. 139172in Walliser, 1996b.Google Scholar
Bayer, U. 1978. Morphogenetic programs, instabilities, and evolution—a theoretical study. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 156:226261.Google Scholar
Berner, R. A. 1987. Models for carbon and sulfur cycles and atmospheric oxygen: application to Paleozoic geologic history. American Journal of Science 287:177196.Google Scholar
Berner, R. A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science 291:339376.Google Scholar
Brock, J. P. 2000. The evolution of adaptive systems. Academic Press, San Diego.Google Scholar
Chamberlain, J. A. Jr. 1980. Hydromechanical design of fossil cephalopods. In House, M. R. and Senior, J. R., eds. The Ammonoidea. Systematics Association Special Volume 18:289336. Academic Press, New York.Google Scholar
Chamberlain, J. A. Jr. 1993. Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios Memoire Spécial 15:4961.CrossRefGoogle Scholar
Chirat, R. 2001. Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology 27:485499.2.0.CO;2>CrossRefGoogle Scholar
Conolly, S. R. and Miller, A. I. 2001. Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited. Paleobiology 27:751767.2.0.CO;2>CrossRefGoogle Scholar
Conolly, S. R. and Miller, A. I. 2002. Global Ordovician faunal transitions in the marine benthos: ultimate causes. Paleobiology 28:2640.Google Scholar
Crame, J. A. 2002. Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and Recent bivalve faunas. Paleobiology 28:184207.2.0.CO;2>CrossRefGoogle Scholar
Crick, R. 1988. Buoyancy regulation and macroevolution in nautiloid cephalopods. Senckenbergiana Lethaea 69(l/2):1342.Google Scholar
Currey, J. D. 1988. Shell form and strength. Pp. 183210in Trueman, E. R. and Clarke, M. R., eds. The Mollusca, Vol. 11. Form and function. Academic Press, New York.Google Scholar
Doguzhaeva, L. A. 1999. Beaks and radulae of Late Carboniferous ammonoids from the Southern Urals. Pp.6888in Rozanov, A. Y. and Shevyrev, A. A., eds. Fossil cephalopods: recent advances in their study. Russian Academy of Science, Paleontological Institute, Moscow. [In Russian.]Google Scholar
Doguzhaeva, L. A., Mapes, R. H., and Mutvei, H. 1997. Beaks and radulae of early Carboniferous goniatites. Lethaia 30:305313.CrossRefGoogle Scholar
Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica 45:1220.Google Scholar
Eble, G. J. 1998. The role of development in evolutionary radiations. Pp. 132161in McKinney, M. and Drake, J., eds. Biodiversity dynamics. Columbia University Press, New York.Google Scholar
Erben, H. K. 1964. Die Evolution der ältesten Ammonoidea (Lieferung I). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 120:107212.Google Scholar
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.Google Scholar
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):76102.Google Scholar
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.Google Scholar
Grossman, E. L., Bruckschen, P., Mii, H.-S., Chuvashov, B. I., Yancey, T. E., and Veizer, J. 2002. Carboniferous paleoclimate and global change: isotopic evidence from the Russian Platform. Pp. 6171in Carboniferous stratigraphy and paleogeography in Eurasia. Institute of Geology and Geochemistry, Russian Academy of Sciences, Urals Branch, Ekaterinburg.Google Scholar
Hallam, A. 1989. The case of sea level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London B 325:437455.Google Scholar
Hallam, A., and Wignall, P. 1999. Mass extinction and sea-level changes. Earth Science Reviews 48:217259.CrossRefGoogle Scholar
Hewitt, R. A. 1996. Architecture and strength of the ammonoid shell. Pp. 297343in Landman, N. H. et al. 1996a.Google Scholar
Hewitt, R. A., and Westermann, G. E. G. 1990. Nautilus shell strength variance as an indicator of habitat depth limits. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 179:7195.Google Scholar
House, M. R. 1985. Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature 213:1722.Google Scholar
House, M. R. 1988. Extinction and survival in the Cephalopoda. In Larwood, G. P., ed. Extinction and survival in the fossil record. Systematics Association Special Volume 34:139154. Clarendon, Oxford.Google Scholar
Jacobs, D. K., and Chamberlain, J. A. Jr. 1996. Buoyancy and hydrodynamics in ammonoids. Pp. 169224in Landman, et al. 1996a.CrossRefGoogle Scholar
Kaljo, D., Boucot, A., Corfield, R. M., Le Herisse, A., Koren, T. N., Kriz, J., Männik, P., Märss, T., Nestor, V., Shaver, R. H., Siveter, D. J., and Viira, V. 1996. Silurian bio-events. Pp. 173224 in Walliser, 1996b.Google Scholar
Kauffman, S. 1989. Adaptation on rugged fitness landscapes. Pp. 527618in Stein, D., ed. Lectures in the sciences of complexity. SFI Studies in the sciences of complexity. Addison-Wesley, Reading, Mass.Google Scholar
Keupp, H. 2000. Ammoniten. Jan Thorbecke, Stuttgart.Google Scholar
Kröger, B. 2002. Antipredatory traits of the ammonoid shell: Indications from Jurassic ammonoids with sublethal injuries. Paläontologische Zeitschrift 76:359375.Google Scholar
Kröger, B. 2003. The size of the siphuncle in cephalopod evolution. Senckenbergiana Lethaea 83(l/2):3952.Google Scholar
Kröger, B. 2004. Large size shell injuries in middle Ordovician Orthocerida (Nautiloidea, Cephalopoda). GFF 126:311316.Google Scholar
Kullmann, J., and Nikolaeva, S. N. 1999. Ammonoid turnover at the middle Carboniferous boundary and biostratigraphy of the early late Carboniferous. Pp. 169194in Rozanov, A. Y. and Shevyrev, A. A., eds. Fossil cephalopods: recent advances in their study. Russian Academy of Science, Paleontological Institute, Moscow.Google Scholar
Kullmann, J., and Nikolaeva, S. N. 2003. A global review of the Serpukhovian ammonoid biostratigraphy. Newsletter Stratigraphy 39(2/3):101123.Google Scholar
Landman, N. H. 1988. Early ontogeny of Mesozoic Ammonoids and Nautilida. Pp. 215228in Wiedmann, J. and Kullmann, J., eds. Cephalopods present and past. Schweizerbart, Stuttgart.Google Scholar
Landman, N. H., Tanabe, K., and Davis, R. A., eds. 1996a. Ammonoid paleobiology. Plenum, New York.Google Scholar
Landman, N. H., Tanabe, K., and Shigeta, Y. 1996b. Ammonoid embryonic development. Pp. 344407 in Landman, et al. 1996a.Google Scholar
Lövtrup, S., and Lövtrup, M. 1988. The morphogenesis of molluscan shells: a mathematical account using biological parameters. Journal of Morphology 197:5362.Google Scholar
Mapes, R. H. 1987. Late Paleozoic cephalopod mandibles: frequency of occurrence, modes of preservation, and paleoecological implications. Journal of Paleontology 61:521538.Google Scholar
Mapes, R. H. M., and Chaffin, D. T. 2003. Predation on Cephalopods. Pp. 177237in Kelley, P. H., Kowalewski, M., and Hansen, T., eds. Predator-prey interactions in the fossil record. Kluwer Academic/Plenum, New York.Google Scholar
Mapes, R. H. M., Sims, S., and Boardman, D. R. II. 1995. Predation on the Pennsylvanian ammonoid Gonioloboceras and its implications for allochthonous vs. autochthonous accumulations of Goniatites and other ammonoids. Journal of Paleontology 69:441446.Google Scholar
Marshall, J. D., Brenchley, P. J., Mason, P., Wolff, G. A., Ricardo, A. A., Hints, L., and Meidla, T. 1997. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 132:195210.Google Scholar
McGhee, G. R. Jr. 1996. The Late Devonian mass extinction. Columbia University Press, New York.Google Scholar
Nichols, J. D., and Pollock, K. H. 1983. Estimating taxonomic diversity, extinction rates, and speciation rates from fossil data using capture-recapture models. Paleobiology 9:150163.Google Scholar
Peters, S. A., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.CrossRefGoogle ScholarPubMed
Pollock, K. H., Nichols, J. D., Brownie, C., and Hines, J. E. 1990. Statistical inference for capture-recapture experiments. Wildlife Monographs 107:197.Google Scholar
Porebska, E., and Sawlowicz, Z. 1997. Palaeoceanographic linkage of geochemical and graptolite events across the Silurian/Devonian boundary in Bardzkie Mountains (Southwest Poland). Palaeogeography, Palaeoclimatology, Palaeoecology 132:343354.Google Scholar
Ramsbottom, W. H. C. 1981. Eustatic control in Carboniferous ammonoid biostratigraphy. Pp. 369388in House, M. R. and Senior, J. R., eds. The Ammonoidea. Academic Press, New York.Google Scholar
Raup, D. M. 1961. The geometry of shell coiling in gastropods. Proceedings of the National Academy of Sciences USA 47:602609.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell oiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.Google Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science 138:150152.Google Scholar
Raup, D. M., and Chamberlain, J. A. Jr. 1967. Equations for volume and center of gravity in ammonoid shells. Journal of Paleontology 41:566574.Google Scholar
Remane, J., Faure-Muret, A., and Odin, G. S. 1996. International stratigraphic chart. Division of Earth Science UNESCO. http://ccgm.free.fr/charte_gb.html.Google Scholar
Ribessel, U., Wolf-Gladrow, D. A., and Smetacek, V. 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249251.Google Scholar
Saunders, W. B., and Shapiro, E. A. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.Google Scholar
Saunders, W. B., and Wehmann, D. A. 1977. Shell strength of Nautilus as a depth limiting factor. Paleobiology 3:8389.Google Scholar
Saunders, W. B., Work, D. M., and Nikolaeva, S. V. 1999. Evolution of complexity in Paleozoic ammonoid sutures. Science 286:760763.Google Scholar
Schopf, T. J. M., Fisher, J. B., and Smith, C. A. F. 1978. Is the marine latitudinal diversity gradient merely another example of the species are curve? Pp. 365368in Bataglia, B. and Beardmore, J. A., eds. Marine organisms: genetics, ecology, and evolution. Plenum, New York.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.Google Scholar
Sepkoski, J. J. Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global database. Pp. 3551in Walliser, 1996b.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletin of American Paleontology, No. 363.Google Scholar
Sepkoski, J. J. Jr., and Koch, C. F. 1996. Evaluating paleontologic data relating to Bio-Events. Pp. 2134in Walliser, 1996b.Google Scholar
Sims, H. J. 2003. Measures of global biodiversity dynamics (past and present) are meaningless … or are they? Paleobiology 29:12.Google Scholar
Smith, A. B. 2001. Large scale heterogeneity of the fossil record: implications for the Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Stehli, F. G., Douglas, R. G., and Newell, N. D. 1969. Generation and maintenance of gradients in taxonomic diversity. Science 164:947949.Google Scholar
Teichert, C. 1964. Endoceratoidea, Actinoceratidoidea. Pp. K160K216in Teichert, C. et. al. Mollusca 3. Part K ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Trueman, A. E. 1941. The ammonite body-chamber with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society of London 96:339383.Google Scholar
Ubukata, T. 2003. Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology 29:480–419.Google Scholar
Vail, P. R., Mitchum, R. M., and Thompson, S. 1977. Seismic stratigraphy and global changes of sea level, Part 4. Global cycles of relative changes of sea level. American Association of Petroleum Geologists Memoir 26:3897.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.Google Scholar
Vermeij, G. J. 1982. Gastropod shell form, breakage, and repair in relation to predation by the crab Calappa. Malacologia 23:112.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolution. Paleobiology 21:125152.Google Scholar
Vermeij, G. J. 2002. Characters in context: molluscan shells and the forces that mold them. Paleobiology 28:4154.Google Scholar
Walliser, O. H. 1996a. Global events in the Devonian and Carboniferous. Pp. 225264in Walliser, 1996b.Google Scholar
Walliser, O. H. ed. 1996b. Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.CrossRefGoogle Scholar
Ward, P. D. 1981. Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96100.Google Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat. Pp. 607707in Landman, et al. 1996a.Google Scholar
Westermann, G. E. G. 1999. Life habits of nautiloids. Pp. 236297in Savazzi, E. ed. Functional morphology of the invertebrate skeleton. Wiley, London.Google Scholar
Westermann, G. E. G., and Tsujita, C. J. 1999. Life habits of ammonoids. Pp. 299325in Savazzi, E., ed. Functional morphology of the invertebrate skeleton. Wiley, London.Google Scholar
White, G. C., and Burnham, K. P. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Suppl.):120138.CrossRefGoogle Scholar
Wilson, E. O. 1988. The current state of biological diversity. Pp. 318in Wilson, E. O., ed. Biodiversity. National Academy Press, Washington, D.C.Google Scholar
Worsley, T. R., Moore, T. L., Fraticelli, C. M., and Scotese, C. R. 1994. Phanerozoic CO2 levels and global temperatures inferred from changing paleogeography. In Klein, G. D., ed. Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith and breakup of a supercontinent. Geological Society of America Special Paper 288:5773.Google Scholar
Yacobucci, M. 2002. Ammonoids are taxa too: diversity dynamics in Jurassic-Cretaceous ammonoids and why scale matters. Geological Society of America Abstracts with Programs 34(6):A-361.Google Scholar
Zipser, B., and Vermeij, G. J. 1978. Crushing behaviour of tropical and temperate crabs. Journal of Experimental Marine Biology and Ecology 31:155172.Google Scholar