Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-17T12:04:26.729Z Has data issue: false hasContentIssue false

Alpha diversity of Phanerozoic marine communities positively correlates with longevity of genera

Published online by Cambridge University Press:  08 April 2016

Alexander V. Markov*
Affiliation:
Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117997, Russia. E-mail: markov_a@inbox.ru

Abstract

Several lines of theoretical and empirical evidence suggest that there can be a positive correlation between alpha diversity (genus richness) of marine communities (D) and average longevity of marine genera included in these communities (L). One possible reason for such a correlation is that diversity can be expected to give rise to ecosystem stability, which, in turn, may slow down the extinction of taxa. However, this hypothesis has not been verified on the global scale. The analysis of two large data sets (Sepkoski's compendium of fossil marine genera and the Paleobiology Database) shows that the correlation (1) actually exists and (2) is robust to some possible sources of errors in L and D estimation. Further analysis reveals that the correlation is not a secondary pattern caused by any of the following factors: (1) encounter probability of taxa, which is greatly influenced by differential incompleteness of the fossil record; (2) degree of sediment lithification, which is one of the major factors affecting the preservation of fossils; (3) onshore-offshore gradient; (4) parallel growth of both L and D through the Phanerozoic; (5) paleolatitudinal gradient. Although there may be other factors that influence both L and D in a similar way, the results generally confirm the hypothesis that higher alpha diversity enhances longevity of genera.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of National Academy of Sciences of the USA 98:62616266.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. J. S. and McCall, P., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Benton, M. J. 1999. The history of life: large databases in palaeontology. Pp. 249283 in Harper, D. A. T., ed. Numerical palaeobiology: computer-based modelling and analysis of fossils and their distributions. Wiley, Chichester, U.K. Google Scholar
Benton, M. J., and Emerson, B. C. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50:2340.Google Scholar
Benton, M. J., Wills, M. A., and Hitchin, R. 2000. Quality of the fossil record through time. Nature 403:534537.Google Scholar
Bonuso, N., Newton, C. R., Brower, J. C., and Ivany, L. C. 2002. Does coordinated stasis yield taxonomic and ecologic stability? Middle Devonian Hamilton Group of central New York. Geology 30:10551058.Google Scholar
Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. Jr., and McLaughlin, P. I. 2007. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22:228244.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.Google Scholar
Courtillot, V., and Gaudemer, Y. 1996. Effects of mass extinctions on biodiversity. Nature 381:146148.Google Scholar
Elton, C. S. 1958. Ecology of invasions by animals and plants. Chapman and Hall, London.Google Scholar
Emerson, B. C., and Kolm, N. 2005. Species diversity can drive speciation. Nature 434:10151017.Google Scholar
Erwin, D. H. 2005. Macroevolution: seeds of diversity. Science 308:17521753.Google Scholar
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.CrossRefGoogle ScholarPubMed
Gradstein, F. M., Ogg, J. G., Smith, A. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P., Hinnov, L., House, M. R., Lourens, L., Luterbacher, H. P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold, J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkhuis, J., Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H., Laskar, J., Monechi, S., Powell, J., Plumb, K. A., Raffi, I., Röhl, U., Sadler, P., Sanfilippo, A., Schmitz, B., Shackleton, N. J., Shields, G. A., Strauss, H., Van Dam, J., Veizer, J., van Kolfschoten, Th., and Wilson, D. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Jablonski, D. 2007. Scale and hierarchy in macroevolution. Palaeontology 50:87109.Google Scholar
Jablonski, D., and Hunt, E. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic vs. species-level explanations. American Naturalist 168:556564.CrossRefGoogle Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.Google Scholar
Jackson, J. B. C., and Erwin, D. H. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution 21:322328.Google Scholar
Kidwell, S. M. 1998. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977995.Google Scholar
Korotayev, A., Malkov, A., and Khaltourina, D. 2006. Introduction to social macrodynamics: compact macromodels of the world system growth. Editorial URSS, Moscow.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. B., and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Kremer, M. 1993. Population growth and technological change: one million B.C. to 1990. Quarterly Journal of Economics 108:681716.Google Scholar
Lane, A., and Benton, M. J. 2003. Taxonomic level as a determinant of the shape of the Phanerozoic marine biodiversity curve. American Naturalist 162:265276.Google Scholar
MacArthur, R. H. 1955. Fluctuations of animal populations and a measure of community stability. Ecology 36:533536.Google Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J. Google Scholar
Markov, A. V. 2000. Vozvrashchenie Chernoi Korolevy, ili zakon rosta sredney prodolzhitelnosti sushchestvovaniya rodov v protsesse evolutsii [The return of the Red Queen, or the law of the growth in the mean duration of genera during evolution]. Zhurnal Obshchei Biologii 61:357370. [In Russian, with English abstract.] Google Scholar
Markov, A. V. 2001. Dynamics of the marine faunal diversity in the Phanerozoic: a new approach. Paleontological Journal 35:19.Google Scholar
Markov, A. V. 2002. Mechanisms responsible for the increase in the taxonomic diversity in the Phanerozoic marine biota. Paleontological Journal 36:121130.Google Scholar
Markov, A. V., and Korotayev, A. V. 2007. Phanerozoic marine biodiversity follows a hyperbolic trend. Palaeoworld 16:311318.Google Scholar
May, R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, Princeton, N.J. Google Scholar
McCann, K. S. 2000. The diversity-stability debate. Nature 405:228233.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Miller, A. I. 2002. Diversity of life through time. In Encyclopedia of life sciences. Wiley, Chichester, U.K. http://www.els.net/ [DOI: 10.1038/npg.els.0001636] Google Scholar
Miller, A. I., and Foote, M. 2003. Increased longevities of post-Paleozoic marine genera after mass extinctions. Science 302:10301032.CrossRefGoogle ScholarPubMed
Naeem, S., and Wright, J. P. 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6:567579.Google Scholar
Peters, S. E. 2004. Evenness of Cambrian-Ordovician benthic marine communities in North America. Paleobiology 30:325346.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages Geology 30:331334.Google Scholar
Raup, D. M. 1987. Mass extinction: a commentary. Palaeontology 30:113.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Russell, M. P., and Lindberg, D. R. 1988. Real and random patterns associated with molluscan spatial and temporal distributions. Paleobiology 14:322330.Google Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Paleozoic. Science 235:6466.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Sepkoski, J. J. Jr. 1991a. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.Google Scholar
Sepkoski, J. J. Jr. 1991b. Population biology models in macroevolution. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:136156. Paleontological Society, Knoxville, Tenn. Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Smith, A. B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society 164:731745.Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.Google Scholar
von Foerster, H., Mora, P., and Amiot, L. 1960. Doomsday: Friday, 13 November, A.D. 2026. Science 132:12911295.CrossRefGoogle Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.CrossRefGoogle ScholarPubMed