Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T00:34:11.632Z Has data issue: false hasContentIssue false

Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton

Published online by Cambridge University Press:  06 February 2017

Matthew G. Powell
Affiliation:
Department of Geology, Juniata College, 1700 Moore Street, Huntingdon, Pennsylvania 16652, U.S.A. E-mail: powell@juniata.edu
Douglas S. Glazier
Affiliation:
Department of Biology, Juniata College, 1700 Moore Street, 21 Huntingdon, Pennsylvania 16652, U.S.A. E-mail: glazier@juniata.edu

Abstract

Extensive investigation of the close association between biological diversity and environmental temperature has not yet yielded a generally accepted, empirically validated mechanism to explain latitudinal gradients of species diversity, which occur in most taxa. Using the highly resolved late Cenozoic fossil records of four major taxa of marine plankton, we show that their gradients arise as a consequence of asymmetric geographic range expansion rather than latitudinal variation in diversification rate, as commonly believed. Neither per capita speciation nor extinction rates trend significantly with temperature or latitude for these marine plankton. Species of planktonic foraminifera and calcareous nannoplankton that originate in the temperate zone preferentially spread toward and arrive earlier in the tropics to produce a normal gradient with tropical diversity peaks; by contrast, temperate-zone originating species of diatoms and radiolarians preferentially spread toward and arrive earlier in polar regions to produce reversed gradients with high-latitude diversity peaks. Our results suggest that temperature affects latitudinal diversity gradients chiefly by its effect on species’ range limits rather than on probabilities of speciation and extinction. We show that this mechanism also appears to operate in various multicellular taxa, thus providing a widely applicable explanation for the origin of latitudinal diversity gradients.

Type
Featured Article
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, A. P., Brown, J. H., and Gillooly, J. F.. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:15451548.CrossRefGoogle ScholarPubMed
Allen, A. P., Gillooly, J. F., Savage, V. M., and Brown, J. H.. 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences USA 103:91309135.Google Scholar
Belmaker, J., and Jetz, W.. 2015. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters 18:563571.Google Scholar
Berner, R. A. 1976. Solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5‰ salinity. American Journal of Science 276:713730.Google Scholar
Brierly, C. M., et al. 2009. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323:17141718.Google Scholar
Brown, J. H. 2014a. Why are there so many species in the tropics? Journal of Biogeography 41:822.Google Scholar
Brown, J. H. 2014b. Why marine islands are farther apart in the tropics. American Naturalist 183:842846.CrossRefGoogle ScholarPubMed
Buzas, M. A., and Culver, S. J.. 2009. Geographic origin of species: the temperate-tropical interchange. Geology 37:879881.Google Scholar
Caley, M. J., and Schluter, D.. 1997. The relationship between local and regional diversity. Ecology 78:7080.CrossRefGoogle Scholar
Crowley, T. J., and Zachos, J. C.. 2000. Comparison of zonal temperature profiles for past warm time periods. Pp. 5076 in B. T. Huber, K. G. MacLeod, and S. L. Wing, eds. Warm climates in Earth history. Cambridge University Press, Cambridge.Google Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.Google Scholar
Davies, T. J., Savolainen, V., Chase, M. W., Moat, J., and Barraclough, T. G.. 2004. Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London B 271:21952200.Google Scholar
DiBattista, J. D., et al. 2015. A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography 43:423439.Google Scholar
Dunn, O. J. 1961. Multiple comparisons among means. Journal of the American Statistical Association 56:5264.Google Scholar
Fenton, I. S., Pearson, P. N., Dunkley Jones, T., Farnsworth, A., Lunt, D. J., Markwick, P., and Purvis, A.. 2016. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philosophical Transactions of the Royal Society of London B 371 http://dx.doi.org/10.1098/rstb.2015.0224.Google Scholar
Fisher, R. A. 1970. Statistical methods for research workers, 14th ed. Oliver and Boyd, Edinburgh.Google Scholar
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.. 2014. Dissolved inorganic nutrients (phosphate, nitrate, silicate). Vol. 4 in S. Levitus, ed., and A. Mishonov, technical ed. World ocean atlas 2013. NOAA Atlas NESDIS 76.Google Scholar
Gillman, L. N., and Wright, S. D.. 2014. Species richness and evolutionary speed: the influence of temperature, water and area. Journal of Biogeography 41:3951.Google Scholar
Glazier, D. S. 2015. Is metabolic rate a universal “pacemaker” for biological processes? Biological Reviews 90:377407.Google Scholar
Hawkins, B. A., Diniz-Filho, J. A. F., Jaramillo, C. A., and Soeller, S. A.. 2007. Climate, niche conservatism, and the global bird diversity gradient. American Naturalist 170:S16S27.Google Scholar
Hedges, S. B., Marin, J., Suleski, M., Paymer, M., and Kumar, S.. 2015. Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution 32:835845.Google Scholar
Hillebrand, H. 2004. On the generality of the latitudinal diversity gradient. American Naturalist 163:192211.Google Scholar
Hunt, G., Cronin, T. M., and Roy, K.. 2005. Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters 8:739747.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W.. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.Google Scholar
Jablonski, D., Belanger, C. L., Berke, S. K., Huang, S., Krug, A. Z., Roy, K., Tomasovych, A., and Valentine, J. W.. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proceedings of the National Academy of Sciences USA 110:1048710494.Google Scholar
Jansson, R., Rodríguez-Castañeda, G., and Harding, L. E.. 2013. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67:17411755.Google Scholar
Jaramillo, C., Rueda, M. J., and Mora, G.. 2006. Cenozoic plant diversity in the Neotropics. Science 311:18931896.CrossRefGoogle ScholarPubMed
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., and Mooers, A. O.. 2012. The global diversity of birds in space and time. Nature 491:444448.Google Scholar
Jiang, L.-Q., Feely, R. A., Carter, B. R., Greeley, D. J., Gledhill, D. K., and Arzayus, K. M.. 2015. Climatological distribution of aragonite saturation state in the global oceans. Global Biogeochemical Cycles 29:16561673.Google Scholar
Kamatani, A., and Riley, J. P.. 1979. Rate of dissolution of diatom silica walls in seawater. Marine Biology 55:2935.Google Scholar
Kerkhoff, A. J., Moriarty, P. E., and Weiser, M. D.. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences USA 111:81258130.CrossRefGoogle ScholarPubMed
Krug, A. Z., Jablonski, D., and Valentine, J. W.. 2007. Contrarian clade confirms the ubiquity of spatial origination patterns in the production of latitudinal diversity gradients. Proceedings of the National Academy of Sciences USA 104:1812918134.Google Scholar
Lazarus, D. B. 1994. The Neptune project: developing a large relational database of marine microfossil data on a personal computer. Mathematical Geology 26:817832.Google Scholar
Lazarus, D. B. 2011. The deep-sea microfossil record of macroevolutionary change in plankton and its study. Pp. 141166 in A. J. McGowan, and A. B. Smith, eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London, London.Google Scholar
Lazarus, D. B., Weinkauf, M., and Diver, P.. 2012. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data. Paleobiology 38:144161.Google Scholar
Liow, L. H., and Stenseth, N. C.. 2007. The rise and fall of species: Implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.Google Scholar
Mannion, P. D., Upchurch, P., Benson, R. B. J., and Goswami, A.. 2014. The latitudinal biodiversity gradient through deep time. Trends in Ecology and Evolution 29:4250.Google Scholar
Marin, J., and Hedges, S. B.. 2016. Time best explains global variation in species richness of amphibians, birds and mammals. Journal of Biogeography. doi: 10.1111/jbi.12709.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.Google Scholar
Mayhew, P. J., Jenkins, G. B., and Benton, T. G.. 2008. A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of the Royal Society of London B 275:4753.Google Scholar
Mayhew, P. J., Bell, M. A., Benton, T. G., and McGowan, A. J.. 2012. Biodiversity tracks temperature over time. Proceedings of the National Academy of Sciences USA 109:1514115145.Google Scholar
Mittelbach, G. G., et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10:315331.CrossRefGoogle ScholarPubMed
Naimark, E. B., and Markov, A. V.. 2011. Northward shift in faunal diversity: a general pattern of evolution of Phanerozoic marine biota. Biology Bulletin Reviews 1:7181.Google Scholar
Parmesan, C., and Yohe, G.. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:3742.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.Google Scholar
Powell, M. G. 2009. The latitudinal diversity gradient of brachiopods over the past 530 million years. Journal of Geology 117:585594.Google Scholar
Powell, M. G., Moore, B. R., and Smith, T. J.. 2015. Origination, extinction, invasion, and extirpation components of the brachiopod latitudinal diversity gradient through the Phanerozoic Eon. Paleobiology 41:330341.Google Scholar
Rabosky, D. L., Title, P. O., and Huang, H.. 2015. Minimal effects of latitude on present-day speciation rates in New World birds. Proceedings of the Royal Society of London B 282. doi: 10.1098/rspb.2014.2889.Google Scholar
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science 235:167171.Google Scholar
Ricklefs, R. E., Losos, J. B., and Townsend, T. M.. 2007. Evolutionary diversification of clades of squamate reptiles. Journal of Evolutionary Biology 20:17511762.CrossRefGoogle ScholarPubMed
Rivadeneira, M. M., Alballay, A. H., Villafaña, J. A., et al. 2015. Geographic patterns of diversification and the latitudinal gradient of richness of rocky intertidal gastropods: the “into the tropical museum” hypothesis. Global Ecology and Biogeography 24:11491158.Google Scholar
Roberts, C. M., McClean, C. J., Veron, J. E. N., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C., and Werner, T. B.. 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:12801284.Google Scholar
Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F., and Morlon, H.. 2015. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Global Ecology and Biogeography 24:10591071.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A.. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:5760.Google Scholar
Roy, K., and Goldberg, E. E.. 2007. Origination, extinction, and dispersal: integrative models for understanding present-day diversity gradients. American Naturalist 170:S71S85.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G.. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Rutherford, S., D’Hondt, S., and Prell, W.. 1999. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400:749753.Google Scholar
Schluter, D. 2016. Speciation, ecological opportunity, and latitude. American Naturalist 187:118.Google Scholar
Soria-Carrasco, V., and Castresana, J.. 2012. Diversification rates and the latitudinal gradient of diversity in mammals. Proceedings of the Royal Society of London B 283. doi: 10.1098/rspb.2012.1393.CrossRefGoogle Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127 in R. M. Ross, and W. D. Allmon, eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Stegen, J. C., Enquist, B. J., and Ferriere, R.. 2009. Advancing the metabolic theory of biodiversity. Ecology Letters 12:10011015.Google Scholar
Storch, S. 2012. Biodiversity and its energetic and thermal controls. Pp. 120131 in R. M. Sibly, J. H. Brown, and A. Kodric-Brown, eds. Metabolic ecology: a scaling approach. Wiley, Chichester, U.K.Google Scholar
Strauss, D., and Sadler, P. M.. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Tittensor, D. P., Mora, C., Jetz, W., et al. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:10981101.Google Scholar
Valentine, J. W., Jablonski, D., Krug, A. Z., and Roy, K.. 2008. Incumbency, diversity, and latitudinal gradients. Paleobiology 34:169178.Google Scholar
Wang, Z., Brown, J. H., Tang, Z., and Fang, J.. 2009. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences USA 106:1338813392.Google Scholar
Whittaker, R. J., and Fernández-Palacios, J. M.. 2007. Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford.Google Scholar
Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A., and Reeder, T. W.. 2006. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. American Naturalist 168:579596.Google Scholar
Wiens, J. J., Sukumaran, J., Pyron, R. A., and Brown, R. M.. 2009. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63:12171231.Google Scholar
WoRMS Editorial Board. 2016. World register of marine species. http://www.marinespecies.org.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar