Skip to main content
×
Home
    • Aa
    • Aa

Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals

  • Wolfgang Kiessling (a1) and Ádám T. Kocsis (a2)
Abstract
Abstract

Scleractinian corals have two fundamentally different life strategies, which can be inferred from morphological criteria in fossil material. In the non-photosymbiotic group nutrition comes exclusively from heterotrophic feeding, whereas the photosymbiotic group achieves a good part of its nutrition from algae hosted in the coral’s tissue. These ecologic differences arose early in the evolutionary history of corals but with repeated evolutionary losses and presumably also gains of symbiosis since then. We assessed the biodiversity dynamics and environmental occupancy of both ecologic groups to identify times when the evolutionary losses of symbiosis as inferred from molecular analyses might have occurred and if these can be linked to environmental change. Two episodes are likely: The first was in the mid-Cretaceous when non-symbiotic corals experienced an origination pulse and started to become more common in deeper, non-reef habitats and on siliciclastic substrates initiating a long-term offshore trend in occupancy. The second was around the Cretaceous/Paleogene boundary with another origination pulse and increased occupancy of deep-water settings in the non-symbiotic group. Environmental factors such as rapid global warming associated with mid-Cretaceous anoxic events and increased nutrient concentrations in Late Cretaceous–Cenozoic deeper waters are plausible mechanisms for the shift. Turnover rates and durations are not significantly different between the two ecologic groups when compared over the entire history of scleractinians. However, the deep-water shift of non-symbiotic corals was accompanied by reduced extinction rates, supporting the view that environmental occupancy is a prominent driver of evolutionary rates.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Alroy 2010. The shifting balance of diversity among major marine animal groups. Science 329:11911194.

A. Ando , K. Kaiho , H. Kawahata , and T. Kakegawa 2008. Timing and magnitude of early Aptian extreme warming: unraveling primary delta O-18 variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 260:463476.

M. S. Barbeitos , S. L. Romano , and H. R. Lasker 2010. Repeated loss of coloniality and symbiosis in scleractinian corals. Proceedings of the National Academy of Sciences USA 107:1187711882.

M. Bernecker , and O. Weidlich 2005. Azooxanthellate corals in the Late Maastrichtian–Early Paleocene of the Danish basin: bryozoan and coral mounds in a boreal shelf setting. Pp. 325in A. Freiwald, and J. M. Roberts, eds. Cold-water corals and ecosystems. Springer, Berlin.

D. J. Bottjer , and D. Jablonski 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.

T. J. Bralower , and H. R. Thierstein 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology 12:614618.

S. D. Cairns 1999. Species richness of recent Scleractinia. Atoll Research Bulletin 459:146.

E. Caroselli , G. Mattioli , O. Levy , G. Falini , Z. Dubinsky , and S. Goffredo 2012. Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8 degrees latitudinal gradient. Frontiers in Zoology 9:32.

A. H. Caruthers , P. L. Smith , and D. R. Grocke 2013. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeography, Palaeoclimatology, Palaeoecology 386:104118.

J. Creed 2006. Two invasive alien azooxanthellate corals, Tubastraea coccinea and Tubastraea tagusensis, dominate the native zooxanthellate Mussismilia hispida in Brazil. Coral Reefs 25:350350.

P. J. Edmunds , and P. S. Davies 1986. An energy budget for Porites porites (Scleractinia). Marine Biology 92:339348.

E. Erba , C. Bottini , H. J. Weissert , and C. E. Keller 2010. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science 329:428432.

P. G. Falkowski , Z. Dubinsky , L. Muscatine , and J. W. Porter 1984. Light and the bioenergetics of a symbiotic coral. Bioscience 34:705709.

A. Forster , S. Schouten , M. Baas , and J. S. S. Damste 2007a. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35:919922.

G. A. Gill , M. Santantonio , and B. Lathuiliere 2004. The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sedimentary Geology 166:311334.

F. M. Gradstein , J. G. Ogg , M. D. Schmitz , and G. M. Ogg , eds. 2012. The geologic time scale 2012. Elsevier, Amsterdam.

O. Hoegh-Guldberg , P. J. Mumby , A. J. Hooten , R. S. Steneck , P. Greenfield , E. Gomez , C. D. Harvell , P. F. Sale , A. J. Edwards , K. Caldeira , N. Knowlton , C. M. Eakin , R. Iglesias-Prieto , N. Muthiga , R. H. Bradbury , A. Dubi , and M. E. Hatziolos 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:17371742.

M. J. Hopkins , C. Simpson , and W. Kiessling 2014. Differential niche dynamics among major marine invertebrate clades. Ecology Letters 17:314323.

F. Houlbrèque , and C. Ferrier-Pagès 2009. Heterotrophy in tropical scleractinian corals. Biological Reviews 84:117.

T. P. Hughes , A. H. Baird , D. R. Bellwood , M. Card , S. R. Connolly , C. Folke , R. Grosberg , O. Hoegh-Guldberg , J. B. C. Jackson , J. Kleypas , J. M. Lough , P. Marshall , M. Nystrom , S. R. Palumbi , J. M. Pandolfi , B. Rosen , and J. Roughgarden 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301:929933.

E. Insalaco 1996. Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeography, Palaeoclimatology, Palaeoecology 121:169194.

D. Jablonski , J. J. Sepkoski Jr., D. J. Bottjer , and P. M. Sheehan 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.

J. B. C. Jackson , and L. Buss 1975. Alleopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences USA 72:51605163.

D. K. Jacobs , and D. R. Lindberg 1998. Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences USA 95:93969401.

H. C. Jenkyns 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11. doi: 10.1029/2009GC002788.

W. Kiessling 2010. Reef expansion during the Triassic: spread of photosymbiosis balancing climatic cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 290:1119.

W. Kiessling , and M. Aberhan 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic times. Paleobiology 33:414434.

W. Kiessling , and R. Baron-Szabo 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214:195223.

W. Kiessling , and C. Simpson 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.

W. Kiessling , E. Aragón , R. Scasso , M. Aberhan , J. Kriwet , F. Medina , and D. Fracchia 2005. Massive corals in Paleocene siliciclastic sediments of Chubut (Patagonia, Argentina). Facies 51:233241.

W. Kiessling , M. Aberhan , B. Brenneis , and P. J. Wagner 2007. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:201222.

W. Kiessling , C. Simpson , and M. Foote 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196198.

M. V. Kitahara , S. D. Cairns , J. Stolarski , D. Blair , and D. J. Miller 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5:e11490.

J. S. Klaus , S. T. Murray , P. K. Swart , and D. F. McNeill 2013. Resource partitioning and paleoecology of Neogene free-living corals as determined from skeletal stable isotope composition. Bulletin of Marine Science 89:937954.

E. G. L. Koh , and H. Sweatman 2000. Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors. Journal of Experimental Marine Biology and Ecology 251:141160.

M. L. McKinney , and C. W. Oyen 1989. Causation and nonrandomness in biological and geological time series: temperature as a proximal control of extinction and diversity. Palaios 4:315.

L. Muscatine , and J. W. Porter 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environment. Bioscience 27:454460.

L. Muscatine , C. Goiran , L. Land , J. Jaubert , J.-P. Cuif , and D. Allemand 2005. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proceedings of the National Academy of Sciences USA 102:15251530.

J. M. Pandolfi , and W. Kiessling 2014. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Current Opinion in Environmental Sustainability 7:5258.

S. E. Peters , and D. P. Loss 2012. Storm and fair-weather wave base: a relevant distinction? Geology 40:511514.

M. A. Rex , R. J. Etter , J. S. Morris , J. Crouse , C. R. McClain , N. A. Johnson , C. T. Stuart , J. W. Deming , R. Thies , and R. Avery 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series 317:18.

J. M. Roberts , A. J. Wheeler , and A. Freiwald 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543547.

C. Roder , M. L. Berumen , J. Bouwmeester , E. Papathanassiou , A. Al-Suwailem , and C. R. Voolstra 2013. First biological measurements of deep-sea corals from the Red Sea. Scientific Reports 3:2802. doi:10.1038/srep02802.

C. Simpson 2013. Species selection and the macroevolution of coral coloniality and photosymbiosis. Evolution 67:16071621.

A. B. Smith , and B. Stockley 2005. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation. Proceedings of the Royal Society of London B 272:865869.

G. D. Stanley Jr. 1981. Early history of scleractinian corals and its geological consequences. Geology 9:507511.

G. D. Stanley Jr., and K. P. Helmle 2010. Middle Triassic coral growth bands and their implication for photosymbiosis. Palaios 25:754763.

G. M. Wellington , and R. K. Trench 1985. Persistence and coexistence of a nonsymbiotic coral in open reef environments. Proceedings of the National Academy of Sciences USA 82:24322436.

P. A. Wilson , and R. D. Norris 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425429.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 168 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th September 2017. This data will be updated every 24 hours.