Skip to main content

Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites

  • David W. Bapst (a1) (a2) and Melanie J. Hopkins (a3)

Reconstructing the tree of life involves more than identifying relationships among lineages; it also entails accurately estimating when lineages diverged. Paleontologists typically scale cladograms to time a posteriori by direct reference to first appearances of taxa in the stratigraphic record. Some approaches use probabilistic models of branching, extinction, and sampling processes to date samples of trees, such as the recently developed cal3 method, which stochastically draws divergence dates given a set of rates for those processes. However, these models require estimates of the rates of those processes, which may be hard to obtain, particularly for sampling. Here, we contrast the use of cal3 and other a posteriori time-scaling approaches by examining a previous study that documented a decelerating rate of morphological evolution in pterocephaliid trilobites. Although aspects of the data set make estimation of branching, extinction, and sampling rates difficult, we use a multifaceted approach to calculate and evaluate the rate estimates needed for applying cal3. In agreement with previous simulation studies, we find that the choice of phylogenetic dating method impacts downstream macroevolutionary conclusions. We also find contradictory evolutionary inferences between analyses on ancestor–descendant contrasts (based on ancestor trait reconstruction methods) and maximum-likelihood parameter estimates. Ancestral taxon inference in cal3 corroborates previously hypothesized ancestor–descendant sequences, but cal3 suggests greater support for budding cladogenesis than anagenesis. This case study demonstrates the potential and wide applicability of the cal3 method and the benefits afforded by choosing cal3 over simpler a posteriori time-scaling approaches.

Hide All
Alba, D. M., Agustí, J., and Moyà-Solà, S.. 2001. Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology 27:7983.
Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.
Bapst, D. W. 2013a. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.
Bapst, D. W. 2013b. When can clades be potentially resolved with morphology? PLoS ONE 8:e62312.
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.
Bapst, D. W., Wright, A. M., Matzke, N. J., and Lloyd, G. T.. 2016. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biology Letters 12(7): 20160237. doi: 10.1098/rsbl.2016.0237.
Bates, K. T., Mannion, P. D., Falkingham, P. L., Brusatte, S. L., Hutchinson, J. R., Otero, A., Sellers, W. I., Sullivan, C., Stevens, K. A., and Allen, V.. 2016. Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Open Science 3(3): 150636. doi: 10.1098/rsos.150636.
Bell, M. A., and Lloyd, G. T.. 2015. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58:379389.
Betancur-R, R., Ortí, G., and Pyron, R. A.. 2015. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecology Letters 18:441450.
Blomberg, S. P., Garland, T. J., and Ives, A. R.. 2003. Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution 57:717745.
Bokma, F., Godinot, M., Maridet, O., Ladevèze, S., Costeur, L., Solé, F., Gheerbrant, E., Peigné, S., Jacques, F., and Laurin, M.. 2016. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Systematic Biology 65:98108.
Brocklehurst, N. 2016. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae. PeerJ 4:e1555.
Brusatte, S. L., Benton, M. J., Ruta, M., and Lloyd, G. T.. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:14851488.
Butler, R. J., and Goswami, A.. 2008. Body size evolution in Mesozoic birds: little evidence for Cope’s rule. Journal of Evolutionary Biology 21:16731682.
Clavel, J., Escarguel, G., and Merceron, G.. 2015. mvmorph: an R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution 6:13111319.
Close, Roger A., Friedman, M., Lloyd, Graeme T., and Benson, Roger B. J.. 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Current Biology 25:21372142.
Cody, R. D., Levy, R. H., Harwood, D. M., and Sadler, P. M.. 2008. Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 260:92121.
Eiting, T., and Gunnell, G.. 2009. Global completeness of the bat fossil record. Journal of Mammalian Evolution 16:151173.
Etienne, R. S., and Rosindell, J.. 2012. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Systematic Biology 61:204213.
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.. 2011. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332:349351.
Ezard, T. H. G., Pearson, P. N., Aze, T., and Purvis, A.. 2012. The meaning of birth and death (in macroevolutionary birth–death models). Biology Letters 8:139142.
Finarelli, J. A., and Flynn, J. J.. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology 55:301313.
Fisher, D. C. 2008. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annual Review of Ecology, Evolution, and Systematics 39:365385.
Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S., and Friedman, M.. 2016. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nature Communications 7:10825. doi: 10.1038/ncomms10825.
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology 22:141151.
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Pp. 74102 in D. H. Erwin, and S. L. Wing, eds. Deep time: paleobiology’s perspective. Paleontological Society, Lawrence, Kans.
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.
Foote, M., and Raup, D. M.. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.
Foote, M., and Sepkoski, J. J.. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr. 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283:13101314.
Friedman, M., and Brazeau, M. D.. 2011. Sequences, stratigraphy, and scenarios: what can we say about the fossil record of the earliest tetrapods? Proceedings of the Royal Society of London B 278:432439.
Gavryushkina, A., Welch, D., Stadler, T., and Drummond, A. J.. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10:e1003919.
Gradstein, F. M., Ogg, G., and Schmitz, M.. 2012. The Geologic Time Scale 2012. Elsevier, Oxford.
Halliday, T. J. D., and Goswami, A.. 2016a. Eutherian morphological disparity across the end-Cretaceous mass extinction. Biological Journal of the Linnean Society 118:152168.
Halliday, T. J. D., and Goswami, A.. 2016b. The impact of phylogenetic dating method on interpreting trait evolution: a case study of Cretaceous–Palaeogene eutherian body-size evolution. Biology Letters 12(8): 20160051. doi: 10.1098/rsbl.2016.0051.
Heath, T. A., Huelsenbeck, J. P., and Stadler, T.. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences USA 111:E2957E2966.
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468479.
Holland, S. M. 2016. The non-uniformity of fossil preservation. Philosophical Transactions of the Royal Society of London B 371(1699): 20150130. doi: 10.1098/rstb.2015.0130.
Hopkins, M. J. 2011a. How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using Late Cambrian trilobites. Evolution 65:32533273.
Hopkins, M. J. 2011b. Species-level phylogenetic analysis of pterocephaliids (Trilobita, Cambrian) from the Great Basin, western USA. Journal of Paleontology 85:11281153.
Hopkins, M. J. 2013a. Data from: Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Dryad Digital Repository.
Hopkins, M. J. 2013b. Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Journal of Evolutionary Biology 26:16651676.
Hopkins, M. J. 2016. Magnitude versus direction of change and the contribution of macroevolutionary trends to morphological disparity. Biological Journal of the Linnean Society 118:116130.
Hopkins, M. J., and Smith, A. B.. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences USA 112:37583763.
Hunt, G., and Carrano, M. T.. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Pp. 245269 in J. Alroy, and G. Hunt, eds. Short Course on Quantitative Methods in Paleobiology. Paleontological Society, New Haven, Conn.
Kendall, D. G. 1948. On the generalized “birth-and-death” process. Annals of Mathematical Statistics 19(1): 115.
Laurin, M. 2004. The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biology 53:594622.
Lee, M. S. Y., Cau, A., Naish, D., and Dyke, G. J.. 2014. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345:562566.
Losos, J. B. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. American Naturalist 177:709727.
Ludvigsen, R., and Westrop, S. R.. 1985. Three new Upper Cambrian stages for North America. Geology 13:139143.
Nee, S. 2006. Birth–death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:117.
Nee, S., Mooers, A. O., and Harvey, P. H.. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences USA 89:83228326.
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118 in M. J. Novacek, and Q. D. Wheeler, eds. Extinction and phylogeny. Columbia University Press, New York.
Palmer, A. R. 1962. Glyptagnostus and associated trilobites in the United States. U.S. Geological Survey Professional Paper 374-F.
Palmer, A. R. 1965. Trilobites of the late Cambrian Pterocephaliid biomere in the Great Basin, United States. U.S. Geological Survey Professional Paper 493.
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.
Pennell, M. W., Harmon, L. J., and Uyeda, J. C.. 2014. Is there room for punctuated equilibrium in macroevolution? Trends in Ecology and Evolution 29:2332.
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.
Puttick, M. N., Thomas, G. H., and Benton, M. J.. 2016. Dating Placentalia: morphological clocks fail to close the molecular fossil gap. Evolution 70:873886.
Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.
R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S.. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P.. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61:973999.
Ruta, M., Wagner, P. J., and Coates, M. I.. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society of London B 273:21072111.
Sadler, P. M. 2007. Constrained optimization approaches to the paleobiologic correlation and seriation problem. Part II: a reference manual to the CONOP program family.
Sadler, P. M., Kemple, W. G., and Kooser, M. A.. 2003. Contents of the compact disc: CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization. In P. J. Harries, ed. Approaches in high-resolution stratigraphic paleontology. Topics in Geobiology 21. Kluwer Academic, Dordrecht, Netherlands.
Schluter, D., Price, T., Mooers, A. O., and Ludwig, D.. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51:16991711.
Sepkoski, J. J. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.
Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A., and Salamin, N.. 2014. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Systematic Biology 63:349367.
Slater, G. J., and Pennell, M. W.. 2014. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Systematic Biology 63:293308.
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.
Solow, A. R., and Smith, W.. 1997. On fossil preservation and the stratigraphic ranges of taxa. Paleobiology 23:271277.
Soul, L. C., and Friedman, M.. 2015. Taxonomy and phylogeny can yield comparable results in comparative paleontological analyses. Systematic Biology 64:608620.
Stadler, T. 2010. Sampling-through-time in birth-death trees. Journal of Theoretical Biology 267:396404.
Stadler, T., and Yang, Z.. 2013. Dating phylogenies with sequentially sampled tips. Systematic Biology 62:674688.
Stanley, S. M. 1979. Macroevolution: patterns and process. Freeman, San Francisco.
Starrfelt, J., and Liow, L. H.. 2016. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philosophical Transactions of the Royal Society of London B 371(1691): 20150219. doi: 10.1098/rstb.2015.0219.
Strauss, D. J., and Sadler, P. M.. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.
Tomiya, S. 2013. Body size and extinction risk in terrestrial mammals above the species level. American Naturalist 182:E196E214.
Vandenberg, A. H. M. 2003. Discussion of “Gisbornian (Caradoc) graptolites from New South Wales, Australia: systematics, biostratigraphy and evolution” by B. Rickards, L. Sherwin and P. Williamson. Geological Journal 38:175179.
Wagner, P. J., and Erwin, D. H.. 1995. Phylogenetic patterns as tests of speciation models. Pp. 87122 in D. H. Erwin, and R. L. Anstey, eds. New approaches to speciation in the fossil record. Columbia University Press, New York.
Wagner, P. J., and Marcot, J. D.. 2010. Probabilistic phylogenetic inference in the fossil record: current and future applications. Pp. 189211. in J. Alroy, and G. Hunt, eds. Short Course on Quantitative Methods in Paleobiology. Paleontological Society, New Haven, Conn.
Wagner, P. J., and Marcot, J. D.. 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4:703713.
Wright, A. M., Lloyd, G. T., and Hillis, D. M.. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Systematic Biology 65:602611.
Zanno, L. E., and Makovicky, P. J.. 2013. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proceedings of the Royal Society of London B 280(1751): 20122526. doi: 10.1098/rspb.2012.2526.
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., and Ronquist, F.. 2016. Total-evidence dating under the fossilized birth–death process. Systematic Biology 65:228249.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 15
Total number of PDF views: 139 *
Loading metrics...

Abstract views

Total abstract views: 857 *
Loading metrics...

* Views captured on Cambridge Core between 5th December 2016 - 22nd July 2018. This data will be updated every 24 hours.