Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T06:07:51.559Z Has data issue: false hasContentIssue false

Convergent evolution of desert rodents: multivariate analysis and zoogeographic implications

Published online by Cambridge University Press:  08 April 2016

Michael A. Mares*
Affiliation:
Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Abstract

Ecological investigations were conducted on rodent faunas in the Sonoran Desert of the southwestern United States and the Monte Desert of northwestern Argentina. Both study areas are physiognomically quite similar and the rodents are only distantly related. Such conditions are ideal for an assessment of possible evolutionary convergence. Multivariate analyses of morphoecological characters support the subjective interpretation that ecological equivalents between the deserts differ in their degree of similarity. The data indicate that the Monte rodent fauna is composed of two distinct groups: a) the caviomorph rodents, which are highly desert adapted; and b) the murids, which range widely beyond the desert's boundaries and are probably not as highly desert adapted, as a group, as are the caviomorphs. When the Monte and Sonoran faunas are compared with a North American coniferous forest rodent fauna, data show that both desert groups have converged toward one another. The different degrees of desert adaptation and different distributional patterns indicate that the Monte Desert was colonized in two different periods (one in the early Tertiary and one in the late Pliocene or early Pleistocene) and can be interpreted as supporting theories regarding South America's colonization by mammals which were first proposed by Simpson (1951).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arata, A. A. 1967. Muroid, gliroid, and dipodoid rodents, pp. 226253. In: Anderson, S. and Jones, J. K. Jr., eds. Recent Mammals of the World. 453 pp. Ronald Press; N.Y.Google Scholar
Axelrod, D. I. 1950. Evolution of desert vegetation in western North America. In: Axelrod, D. I. Studies in Late Tertiary Paleobotany. Carnegie Inst.; Wash. Publ. 590:1323.Google Scholar
Axelrod, D. I. 1958. Evolution of the Madro-Tertiary geoflora. Bot. Rev. 24:433509.Google Scholar
Axelrod, D. I. 1970. Mesozoic paleogeography and early angiosperm history. Bot. Rev. 36:277319.CrossRefGoogle Scholar
Benson, S. B. 1933. Concealing coloration among some rodents of the southwestern United States. Univ. Calif. Publ. Zool. 40:170.Google Scholar
Blair, W. F. 1950. Ecological factors in speciation of Peromyscus. Evolution. 4:253275.Google Scholar
Blair, W. F. 1958. Distributional patterns of vertebrates in the southern United States in relation to past and present environments. pp. 433468. In: Hubbs, C. L., ed. Zoogeography. Am. Assoc. Adv. Sci. Publ. 51: 1–509.Google Scholar
Bradley, W. G. 1968. Food habits of the antelope ground squirrel in southern Nevada. J. Mammal. 49:1421.Google Scholar
Brown, J. H. 1968. Adaptation to environmental temperature in two species of woodrats, Neotoma cinerea and N. albigula. Misc. Publ. Mus. Zool. Univ. Mich. 135:148.Google Scholar
Burt, W. H. and Grossenheider, R. P. 1964. A Field Guide to the Mammals. 284 pp. Houghton Mifflin Co.; Boston.Google Scholar
Clothier, R. R. 1957. Distribution of the Mammals of the Sandia and Manzano Mountains, New Mexico. 215 pp. Unpubl. Ph.D. thesis, Univ. N.M.; Albuquerque, N.M.Google Scholar
Dietz, R. S. and Holden, J. C. 1970. Reconstruction of Pangea: breakup and dispersion of continents, Permian to present. J. Geophys. Res. 75:49394956.Google Scholar
Dixon, W. J., ed. 1970. BMD biomedical computer programs. Univ. Calif. Publ. Autom. Compu. 2:1600.Google Scholar
Emlen, J. M. 1973. Ecology: an Evolutionary Approach. 493 pp. Addison-Wesley Publ. Co.; Menlo Park, Calif.Google Scholar
Findley, J. S. 1969. Biogeography of southwestern boreal and desert mammals. Univ. Kans. Mus. Nat. Hist. Misc. Publ. 51:113128.Google Scholar
Findley, J. S. 1972. Phenetic relationships among bats of the genus Myotis. Syst. Zool. 21:3152.Google Scholar
Findley, J. S. 1973. Phenetic packing as a measure of faunal diversity. Am. Nat. 107:580584.Google Scholar
Findley, J. S. Unpublished ms. A Phenetic Comparison of Four Bat Faunas.Google Scholar
Fleharty, E. D. and Olson, L. E. 1969. Summer food habits of Microtus ochrogaster and Sigmodon hispidus. J. Mammal. 50:475486.Google Scholar
Ghosh, P. K., Purohit, K. G., and Prakash, I. 1964. Studies on the effects of prolonged water deprivation on the Indian desert gerbil, Meriones hurrianae. pp. 301306. In: Environ. Physiol. Psychol. in Arid Cond., Proc. Lucknow Symp. (1962), U.N.E.S.C.O, Paris.Google Scholar
Greer, J. K. 1965. Mammals of Malleco Province, Chile. Publ. Mus. Mich. State Univ., Biol. Ser. 3(2):51151.Google Scholar
Haffer, J. 1969. Speciation in Amazonian forest birds. Science. 165:131137.Google Scholar
Haffer, J. 1970. Geologic-climatic history and zoogeographic significance of the Uraba region in northwestern Colombia. Caldasia. 10:603636.Google Scholar
Hall, E. R. 1946. Mammals of Nevada. 710 pp. Univ. Calif. Press; Los Angeles, Calif.Google Scholar
Hall, E. R. and Kelson, K. R. 1959. The Mammals of North America. 2 vol., 1083 pp. Ronald Press; New York, N.Y.Google Scholar
Hawbecker, A. C. 1947. Food and moisture requirements of the Nelson antelope ground squirrel. J. Mammal. 28:115125.Google Scholar
Herrero-Ducloux, A. 1963. The Andes of western Argentina. Am. Assoc. Pet. Geol. Mem. 2:1628.Google Scholar
Hershkovitz, P. 1962. Evolution of neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Fieldiana, Zool. 46:1524.Google Scholar
Hershkovitz, P. 1966. Mice, land bridges and Latin American faunal interchange. pp. 725751. In: Wenzel, R. L. and Tipton, V. J., eds. Ectoparasites of Panama. Field Mus. Nat. Hist.; Chicago, Ill.Google Scholar
Hershkovitz, P. 1969. The recent mammals of the neotropical region: a zoogeographic and ecological review. Q. Rev. Biol. 44:170.Google Scholar
Hershkovitz, P. 1972. The recent mammals of the Neotropical Region: a zoogeographic and ecological review. pp. 311314. In: Keast, A., Erk, F. C., and Glass, B., eds. Evolution, Mammals, and Southern Continents. State Univ. of N.Y. Press; Albany, N.Y.Google Scholar
Hibbard, C. W., Ray, C. E., Savage, D. E., Taylor, D. W., and Guilday, J. E. 1965. Quaternary mammals of North America. In: Wright, H. E. Jr. and Frey, D. G., eds. The Quaternary of the United States. 922 pp. Princeton Univ. Press; Princeton, N.J.Google Scholar
Jaeger, E. C. 1957. The North American Deserts. 308 pp. Stanford Univ. Press; Stanford, Calif.Google Scholar
Keast, A. 1972. Australian mammals: zoogeography and evolution. pp. 195246. In: Keast, A., Erk, F. C., and Glass, B., eds. Evolution, Mammals, and Southern Continents. State Univ. N.Y. Press; Albany, N.Y.Google Scholar
Klopfer, P. H. and MacArthur, R. H. 1961. On the causes of tropical species diversity: niche overlap. Am. Nat. 95:223226.Google Scholar
Koford, C. B. 1968. Peruvian desert mice: water independence, competition, and breeding cycle near the equator. Science. 160:552553.Google Scholar
Layne, J. N. 1972. Tail autotomy in the Florida mouse, Peromyscus floridanus. J. Mammal. 53:6271.CrossRefGoogle Scholar
Lowe, C., Morello, J., Goldstein, G., Cross, J., and Neuman, R. 1973. Analisis comparativo de la vegetacion de los desiertos subtropicales de Norte y Sud America (Monte-Sonora). Ecología. 1:3543.Google Scholar
Lundelius, E. L. Jr. and Turnbull, W. D. 1967. Pliocene mammals from Victoria, Australia. Aust. N. Z. Assoc. Adv. Sci. 39th Congr., Melbourne, Jan. 1967. Abstr. Sec. G: K-9.Google Scholar
MacArthur, R. H. 1972. Geographical Ecology. 269 pp. Harper and Row; New York, N.Y.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. 203 pp. Princeton Univ. Press; Princeton, N.J.Google Scholar
MacMillen, R. E., Bandinette, R. V., and Lee, A. K. 1972. Water economy and energy metabolism of the sandy inland mouse, Leggadina hermannsburgensis. J. Mammal. 53:529539.Google Scholar
MacMillen, R. E. and Lee, A. K. 1967. Australian desert mice: independence of exogenous water. Science. 158:383385.Google Scholar
MacMillen, R. E. and Lee, A. K. 1969. Water metabolism of Australian hopping mice. Comp. Biochem. Physiol. 28:493514.Google Scholar
Mares, M. A. 1973a. Climates, Mammalian Communities and Desert Rodent Adaptations: an Investigation into Evolutionary Convergence. 345 pp. Ph.D. Thesis. Univ. Tex., Austin, Tex.Google Scholar
Mares, M. A. 1973b. Desert rodent ecology: review for origin and structure of ecosystems convergent evolution program. Univ. Nac. de Tucuman, Inst. Miguel Lillo, Tucuman, Argentina. Acta Zool. Lilloana. 30:207225.Google Scholar
Mares, M. A. 1975a. Observations on Argentine desert rodent ecology, with emphasis on water relations of Eligmodontia typus. pp. 155175. In: Prakash, I. and Ghosh, P. K., eds. Rodents in Desert Environments. W. Junk b.v.; The Hague, Neth.Google Scholar
Mares, M. A. 1975b. South American mammal zoogeography: evidence from convergent evolution in desert rodents. Proc. Nat. Acad. Sci. U.S.A. 72:17021706.Google Scholar
Martin, P. S. and Mehringer, P. J. Jr. 1965. Pleistocene pollen analysis and biogeography of the Southwest. pp. 433451. In: Wright, H. E. Jr. and Frey, D. G., eds. The Quaternary of the United States. 922 pp. Princeton Univ. Press; Princeton, N.J.Google Scholar
McCleary, J. A. 1968. The biology of desert plants. pp. 141194. In: Brown, G. W. Jr., ed. Desert Biology. 635 pp. Academic Press; New York, N.Y.Google Scholar
Mehringer, P. J. Jr. 1967. The environment of extinction of the late-Pleistocene megafauna in the arid southwestern United States. pp. 247266. In: Martin, P. S. and Wright, H. E. Jr., eds. Pleistocene Extinctions, the Search for a Cause. 453 pp. Yale Univ. Press; New Haven, Conn.Google Scholar
Mooney, H. A. and Dunn, E. L. 1970. Convergent evolution of mediterranean-climate evergreen sclerophyll shrubs. Evolution. 24:292303.Google Scholar
Morello, J. 1958. La provincia fitogeografica del Monte. Opera Lilloana. 2:1155.Google Scholar
Patterson, B. and Pascual, R. 1972. The fossil mammal fauna of South America. pp. 247309. In: Keast, A., Erk, F. C., and Glass, B., eds. Evolution, Mammals, and Southern Continents. State Univ. N.Y. Press; Albany, N.Y.Google Scholar
Pearson, O. P. 1951. Mammals in the highlands of southern Peru. Bull. Mus. Comp. Zool. 106:117174.Google Scholar
Pianka, E. R. 1967. Lizard species diversity. Ecology. 48:333351.Google Scholar
Pianka, E. R. 1969. Sympatry of desert lizards (Ctenotus) in western Australia. Ecology. 50:10121030.CrossRefGoogle Scholar
Pianka, E. R. 1971. Lizard species density in the Kalahari desert. Ecology. 52:10241029.Google Scholar
Pianka, E. R. 1972. Zoogeography and speciation in Australian desert lizards: an ecological perspective. Copeia. 1972:127145.Google Scholar
Pianka, E. R. 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4:5374.CrossRefGoogle Scholar
Ranck, G. L. 1968. The rodents of Libya. Bull. U.S. Natl. Mus. No. 275, 272 pp.Google Scholar
Raven, P. H. 1963. Amphitropical relationships in the floras of North and South America. Q. Rev. Biol. 38:151177.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. 468 pp. Univ. Chic. Press; Chicago, Ill.Google Scholar
Rood, J. P. 1970. Ecology and social behavior of the desert cavy (Microcavia australis). Am. Midl. Nat. 83:415454.Google Scholar
Rood, J. P. 1972. Ecological and behavioural comparisons of three genera of Argentine cavies. Anim. Behav. Monogr. 5(1):183.Google Scholar
Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: prediction from climatological data. Am. Nat. 102:6774.Google Scholar
Rosenzweig, M. L. and Winakur, J. 1969. Population ecology of desert rodent communities: habitats and environmental complexity. Ecology. 50:558571.Google Scholar
Russell, R. J. 1968. Evolution and classification of the pocket gophers of the subfamily Geomyinae. Univ. Kans. Publ. Mus. Nat. Hist. 16:473579.Google Scholar
Sage, R. D. 1972. The origin and structure of the desert ecosystem: the lizard component. In: Origin and Structure of Ecosystems. 1972 grant proposal to the National Science Foundation.Google Scholar
Savage, D. E. 1951. A Miocene phyllostomatid bat from Colombia, South America. Univ. Calif. Publ. Bull. Dept. Geol. Sci. 28:357366.Google Scholar
Schmidt-Nielsen, K. 1964. Desert Animals. 277 pp. Clarendon Press; Oxford, Engl.Google Scholar
Schmidt-Nielsen, K., Dawson, T. J., Hammel, H. T., Hind:, D., and Jackson, D. C. 1965. The jack rabbit—a study in desert survival. Hvalradets Skr. 48:125142.Google Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1350.Google Scholar
Simpson, G. G. 1951. History of the fauna of Latin America. Am. Sci. 38:361389.Google Scholar
Simpson, G. G. 1961. Historical zoogeography of Australian mammals. Evolution. 15:431446.Google Scholar
Simpson, G. G. 1966. Mammalian evolution on the southern continents. Neues Jahrb. Geol. Paläontol. 125:118.Google Scholar
Simpson, G. G. 1970. The Argyrolagidae, extinct South American marsupials. Bull. Mus. Comp. Zool. 139:186.Google Scholar
Simpson Vuilleumier, B. B. 1971. Pleistocene changes in the fauna and flora of South America. Science. 173:771780.Google Scholar
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical Taxonomy. 573 pp. W. H. Freeman and Co.; San Francisco, Calif.Google Scholar
Solbrig, O. T. 1972. The floristic disjunctions between the “Monte” in Argentina and the “Sonoran desert” in Mexico and the United States. Ann. Mo. Bot. Gard. 59:218223.Google Scholar
Solbrig, O. T. In press. The Origin and Floristic Affinities of the South American Temperate Desert and Semidesert Regions. Univ. Tex. Press; Austin, Tex.Google Scholar
Tamsitt, J. R. 1967. Niche and species diversity in neotropical bats. Nature. 213:784786.Google Scholar
Van Dyke, E. C. 1940. The origin and distribution of the coleopterous insect fauna of North America. Proc. Sixth Pac. Sci. Congr. 4:255268.Google Scholar
Van Valen, L. 1965. Morphological variation and width of ecological niche. Am. Nat. 49:377390.Google Scholar
Vanzolini, P. E. and Williams, E. E. 1970. South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arq. Zool., São Paulo. 19:1298.Google Scholar
Vervoorst, F. 1973. Plant communities in the Bolson de Pipanaco. SES-IBP, Prog. Rep. 1973. III:3–17.Google Scholar
Vorhies, C. T. and Taylor, W. P. 1940. Life history and ecology of the white-throated wood rat, Neotoma albigula Hartley, in relation to grazing in Arizona. Univ. Ariz., Agric. Exp. Stn. Tech. Bull. 86:455529.Google Scholar
Weber, H. 1969. Zur natürlichen vegetations gliederung von Sudamerika. pp. 475518. In: Fittkau, E. J., Illies, J., Klinge, H., Schwabe, G. H., and Sioli, H., eds. Biogeography and Ecology in South America. Junk N. V.; The Hague, Neth.Google Scholar
Wenzel, R. L. and Tipton, V. J. 1966. Some relationships between mammal hosts and their ectoparasites. pp. 677723. In: Wenzel, R. L. and Tipton, V. J., eds. Ectoparasites of Panama. Field Mus. Nat. Hist.; Chicago, Ill.CrossRefGoogle Scholar
Whittaker, R. H. 1970. Communities and Ecosystems. 162 pp. Macmillan Co.; New York, N.Y.Google Scholar
Willson, M. F. 1969. Avian niche size and morphological variation. Am. Nat. 103:531542.Google Scholar
Wood, A. E. 1935. Evolution of heteromyid rodents. Ann. Carnegie Mus. 24:73263.Google Scholar
Wood, A. E. 1941. The mammalian fauna of the White River Oligocene. Part II, Rodentia. Trans. Am. Phil. Soc. Phil. 28:155269.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Proc. Am. Philos. Soc. 110:425433.Google Scholar