Skip to main content
    • Aa
    • Aa

Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change

  • Larisa R. G. DeSantis (a1), Judith H. Field (a2), Stephen Wroe (a2) (a3) and John R. Dodson (a2) (a4)

Throughout the late Quaternary, the Sahul (Pleistocene Australia–New Guinea) vertebrate fauna was dominated by a diversity of large mammals, birds, and reptiles, commonly referred to as megafauna. Since ca. 450–400Ka, approximately 88 species disappeared in Sahul, including kangaroos exceeding 200kg in size, wombat-like animals the size of hippopotamuses, flightless birds, and giant monitor lizards that were likely venomous. Ongoing debates over the primary cause of these extinctions have typically favored climate change or human activities. Improving our understanding of the population biology of extinct megafauna as more refined paleoenvironmental data sets become available will assist in identifying their potential vulnerabilities. Here, we apply a multiproxy approach to analyze fossil teeth from deposits dated to the middle and late Pleistocene at Cuddie Springs in southeastern Australia, assessing relative aridity via oxygen isotopes as well as vegetation and megafaunal diets using both carbon isotopes and dental microwear texture analyses. We report that the Cuddie Springs middle Pleistocene fauna was largely dominated by browsers, including consumers of C4 shrubs, but that by late Pleistocene times the C4 dietary component was markedly reduced. Our results suggest dietary restriction in more arid conditions. These dietary shifts are consistent with other independently derived isotopic data from eggshells and wombat teeth that also suggest a reduction in C4 vegetation after ~45 Ka in southeastern Australia, coincident with increasing aridification through the middle to late Pleistocene. Understanding the ecology of extinct species is important in clarifying the primary drivers of faunal extinction in Sahul. The results presented here highlight the potential impacts of aridification on marsupial megafauna. The trend to increasingly arid conditions through the middle to late Pleistocene (as identified in other paleoenvironmental records and now also observed, in part, in the Cuddie Springs sequence) may have stressed the most vulnerable animals, perhaps accelerating the decline of late Pleistocene megafauna in Australia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hide All
ArmanS. D., and PrideauxG. J.. 2015. Dietary classification of extant kangaroos and their relatives (Marsupialia: Macropodoidea). Austral Ecology 40:909922.
BarnoskyA. D., KochP. L., FeranecR. S., WingS. L., and ShabelA. B.. 2004. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:7075.
BowlerJ. M., JohnstonH., OlleyJ. M., PrescottJ. R., RobertsR. G., ShawcrossW., and SpoonerN. A.. 2003. New ages for human occupation and climate change at Lake Mungo, Australia. Nature 421:837840.
BoulterC. H., BatemanM.D., and CarrA. S.. 2006. Assessment of archaeological site integrity of sandy substrates using luminescence dating. Newsletter of the Society for Archaeological. Sciences 29(2), 812.
BrookmanT. A., and AmbroseS. H.. 2012. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia. Quaternary Research 78:256265.
BurgessC. L., and DeSantisL. R. G.. 2013. Stable isotope ecology of the red-necked wallaby (Macropus rufogriseus): clarifying species-specific responses to climate and geographic variables. Young Scientist 3:14.
CabinR. J., and MitchellR. J.. 2000. To Bonferroni or not to Bonferroni: when and how are the questions. Bulletin of the Ecological Society of America 81:246248.
CerlingT. E., HarrisJ. M., MacFaddenB. J., LeakeyM. G., QuadeJ., EisenmannV., and EhleringerJ. R.. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153158.
CerlingT. E., HartJ. A., and HartT. B.. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:512.
CohenT. J., NansonG. C., JansenJ. D., JonesB. G., and JacobsZ.. 2011. Continental aridification and the vanishing of Australia’s megalakes. Geology 39:167170.
CoplenT. B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66:273276.
CosgroveR., FieldJ., GarveyJ., Brenner-ColtrainJ., GoedeA., CharlesB., WroeS., Pike-TayA., GrunR., AubertM., LeesW., and O’ConnellJ.. 2010. Overdone overkill—the archaeological perspective on Tasmanian megafaunal extinctions. Journal of Archaeological Science 37:24862503.
DawsonT. J. 1995. Kangaroos: biology of the largest marsupials. Sydney: University of New South Wales Press.
DawsonT. J., McTavishK. J., and EllisB. A.. 2004. Diets and foraging behaviour of red and eastern grey kangaroos in arid shrub land: is feeding behaviour involved in the range expansion of the eastern grey kangaroo in the arid zone? Australian Mammalogy 20:169178.
DeSantisL. G. 2011. Stable isotope ecology of extant tapirs from the Americas. Biotropica 43:746754.
DeSantisL. R. G. 2016. Dental microwear textures: reconstructing diets of fossil mammals. Surface Topography: Metrology and Properties 4(2), 023002.
DeSantisL. R. G., and HauptR. J.. 2014. Cougars’ key to survival through the Late Pleistocene extinction: insights from dental microwear texture analysis. Biology Letters 10:20140203.
DeSantisL. R., and WallaceS. C.. 2008. Neogene forests from the Appalachians of Tennessee, USA: geochemical evidence from fossil mammal teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 266:5968.
DeSantisL. R. G., FeranecR. S., and MacFaddenB. J.. 2009. Effects of global warming on ancient mammalian communities and their environments. PLoS ONE 4:e5750.
DeSantisL. R. G., SchubertB. W., ScottJ. R., and UngarP. S.. 2012. Implications of diet for the extinction of saber-toothed cats and American lions. PLoS ONE 7:e52453.
DeSantisL. R. G., ScottJ. R., SchubertB. W., DonohueS. L., McCrayB. M., Van StockC. A., WilburnA. A., GreshkoM. A., and O’HaraM. C.. 2013. Direct comparison of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS ONE 8:e71428.
DodsonJ. R., FullagarR., FurbyJ. H., JonesR., and ProsserI. P.. 1993. Humans and megafauna in a Late Pleistocene environment from Cuddie Springs, north western New South Wales. Archaeology in Oceania 28:9499.
DonohueS. L., DeSantisL. R. G., SchubertB. W., and UngarP. S.. 2013. Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS ONE 8:e77531.
DortchJ., CupperM., GrunR., HarpleyB., LeeK., and FieldJ.. 2016. The timing and cause of megafauna mass deaths at Lancefield Swamp, south-eastern Australia. Quaternary Science Reviews 145:161182.
DunnO. J. 1964. Multiple comparisons using rank sums. Technometrics 6:241252.
FaithJ. T., and O’ConnellJ. F.. 2011. Revisiting the late Pleistocene mammal extinction record at Tight Entrance Cave, southwestern Australia. Quaternary Research 76:397400.
FieldJ. 2006. Trampling through the Pleistocene: Does taphonomy matter at Cuddie Springs? Australian Archaeology 63:920.
FieldJ., and DodsonJ.. 1999. Late Pleistocene megafauna and archaeology from Cuddie Springs, south-eastern Australia. Proceedings of the Prehistoric Society 65:275301.
FieldJ., and FullagarR.. 2001. Archaeology and Australian megafauna. Science 294:7.
FieldJ., and WroeS.. 2012. Aridity, faunal adaptations and the Australian late Pleistocene faunal extinctions. World Archaeology 44(1), 5674.
FieldJ., FullagarR., and LordG.. 2001. A large area archaeological excavation at Cuddie Springs. Antiquity 75:696702.
FieldJ. H., DodsonJ. R., and ProsserI. P.. 2002. A Late Pleistocene vegetation history from the Australian semi-arid zone. Quaternary Science Reviews 21:10231037.
FieldJ., FilliosM., and WroeS.. 2008. Chronological overlap between humans and megafauna in Sahul (Pleistocene Australia–New Guinea): a review of the evidence. Earth Science Reviews 89:97115.
FieldJ., WroeS., TruemanC. N., GarveyJ., and Wyatt-SprattS.. 2013. Looking for the archaeological signature in Australian megafaunal extinctions. Quaternary International 285:7688.
FilliosM., FieldJ., and CharlesB.. 2010. Investigating human and megafauna co-occurrence in Australian prehistory: mode and causality in fossil accumulations at Cuddie Springs. Quaternary International 211:123143.
FisherD. O., and OwensI. P.. 2000. Female home range size and the evolution of social organization in macropod marsupials. Journal of Animal Ecology 69:10831098.
FraserR. A., GrünR., PrivatK., and GaganM. K.. 2008. Stable-isotope microprofiling of wombat tooth enamel records seasonal changes in vegetation and environmental conditions in eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 269:6677.
FriedliH., LötscherH., OeschgerH., SiegenthalerU., and StaufferB.. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237238.
GillespieR., and BrookB. W.. 2006. Is there a Pleistocene archaeological site at Cuddie Springs? Archaeology in Oceania 41:111.
GraysonD. K. 2007. Deciphering North American Pleistocene extinctions. Journal of Anthropological Research 63:185214.
GrineF. E. 1986. Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human Evolution 15:783822.
GröckeD. R. 1997. Stable-isotope studies on the collagenic and hydroxylapatite components of fossils: palaeoecological implications. Lethaia 30:6578.
GrünR., EgginsS., AubertM., SpoonerN., PikeA.W.G., and MüllerW.. 2010. ESR and U-series analysis of faunal material from Cuddie Springs, NSW, Australia: implications for the timing of the extinction of the Australian megafauna. Quaternary Science Reviews 29:596610.
HauptR. J., DeSantisL. R. G., GreenJ. L., and UngarP. S.. 2013. Dental microwear texture as a proxy for diet in xenarthrans. Journal of Mammalogy 94:856866.
JouzelJ., Masson-DelmotteV., CattaniO., DreyfusG., FalourdS., HoffmanG., MinsterB., NouetK., BarnolaJ. M., ChappellazJ., FischerH., GalletJ. C., JohnsenS., LeuenbergerM., LoulergueL., LuethiD., OerterH., ParreninF., RaisbeckG., RaynaudD., SchiltA., SchwanderJ., SelmoE., SouchezR., SpahniR., StaufferB., SteffensenJ. P., StenniB., StockerT. F., TisonJ. L., WernerM., and WolffE. W.. 2007. Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 317:793796.
KershawP., MossP., and van der KaarsS.. 2003. Causes and consequences of long-term climatic variability on the Australian continent. Freshwater Biology 48:12741283.
KochP. L., TurossN., and FogelM. L.. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.
LevinN. E., CerlingT. E., PasseyB. H., HarrisJ. M., and EhleringerJ. R.. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences USA 103:1120111205.
MarinoB. D., McElroyM. B., SalawitchR. J., and SpauldingW. G.. 1992. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2 . Nature 357:461466.
MillerG. H., FogelM. L., MageeJ. W., GaganM. K., ClarkeS. J., and JohnsonB. J.. 2005. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309:287290.
MurphyB. P., BowmanD. M. J. S., and GaganM. K.. 2007. The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos. Functional Ecology 21:757766.
MurphyB. P., WilliamsonG. J., and BowmanD. M. J. S.. 2012. Did central Australian megafaunal extinction coincide with abrupt ecosystem collapse or gradual climate change? Global Ecology and Biogeography 21:142151.
MurrayP. 1991. The Pleistocene megafauna of Australia. Pp. 10711164 in R. P. Vickers, J. M. Monaghan, R. F. Baird, and T. H. Rich, eds. Vertebrate palaeontology of Australasia. Victoria: Pioneer Design Studio.
NakagawaS. 2004. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology 15:10441045.
NansonG. C., PriceD. M., and ShortS. A.. 1992. Wetting and drying of Australia over the past 300 ka. Geology 20:791794.
NowakR. M. 1999. Walker’s mammals of the world, 6th ed. Baltimore, Md: Johns Hopkins University Press.
PasseyB. H., and CerlingT. E.. 2002. Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta 66:32253234.
PetitJ. R., JouzelJ., RaynaudD., BarkovN. I., BarnolaJ. M., BasileI., BenderM., ChappellazJ., DavisJ., DelaygueG., DelmotteM., KotlyakovV. M., LegrandM., LipenkovV., LoriusC., PépinL., RitzC., SaltzmanE., and StievenardM.. 2001. Vostok Ice core data for 420,000 years. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076. Boulder, Colo.: NOAA/NGDC Paleoclimatology Program.
PriceG. J., and WebbG. E.. 2006. Late Pleistocene sedimentology, taphonomy and megafauna extinction on the Darling Downs, southeastern Queensland. Australian Journal of Earth Sciences 53:947970.
PriceG. J., WebbG. E., ZhaoJ., FengY., MurrayA. S., CookeB. N., HocknullS. A., and SobbeI. H.. 2011. Dating megafaunal extinction on the Pleistocene Darling Downs, eastern Australia: the promise and pitfalls of dating as a test of extinction hypotheses. Quaternary Science Reviews 30:899914.
PriddelD., WellardG., and ShepherdN.. 1988. Movements of sympatric red kangaroos, Macropus rufus, and western grey kangaroos, Macropus fuliginosus, in Western New-South-Wales. Wildlife Research 15:339346.
PrideauxG. 2004. Systematics and evolution of the sthenurine kangaroos. Berkeley: University of California Press.
PrideauxG. J., LongJ. A., AyliffeL. K., HellstromJ. C., PillansB., BolesW. E., HutchinsonM. N., RobertsR. G., CupperM. L., ArnoldL. J., DevineP. D., and WarburtonN. M.. 2007. An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445:422425.
PrideauxG. J., AyliffeL. K., DeSantisL.R.G., SchubertB. W., MurrayP. F., GaganM. K., and CerlingT. E.. 2009. Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proceedings of the National Academy of Sciences USA 106:1164611650.
RobertsR. G., FlanneryT. F., AyliffeL. K., YoshidaH., OlleyJ. M., PrideauxG. J., LaslettG. M., BaynesA., SmithM. A., JonesR., and SmithB. L.. 2001. New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292:18881892.
SaltréF., Rodríguez-ReyM., BrookB. W., JohnsonC. N., TurneyC. S., AlroyJ., CooperA., BeetonN., BirdM. I., FordhamD. A., and GillespieR.. 2016. Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications 7:10511.
ScottJ. R. 2012. Dental microwear texture analysis of extant African Bovidae. Mammalia 76:157174.
ScottR. S., UngarP. S., BergstromT. S., BrownC. A., GrineF. E., TeafordM. F., and WalkerA.. 2005. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436:693695.
SecordR., BlochJ. I., ChesterS. G., BoyerD. M., WoodA. R., WingS. L., KrausM. J., McInerneyF. A., and KrigbaumJ.. 2012. Evolution of the earliest horses driven by climate change in the Paleocene–Eocene thermal maximum. Science 335:959962.
ThorneA., GrünR., MortimerG., SpoonerN. A., SimpsonJ. J., McCullochM., TaylorL., and CurnoeD.. 1999. Australia’s oldest human remains: age of the Lake Mungo 3 skeleton. Journal of Human Evolution 36:591612.
TieszenL. L. 1991. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of the Archaeological Sciences 18:227248.
TriggsB. 2009. Wombats, 2nd ed. Victoria, Australia: CSIRO Publishing.
TruemanC. N. G., FieldJ. H., DortchJ., CharlesB., and WroeS.. 2005. Prolonged coexistence of humans and megafauna in Pleistocene Australia. Proceedings of the National Academy of Sciences USA 102:83818385.
TurneyC. S. M., BirdM. I., FifieldL. K., RobertsR. G., SmithM., DortchC. E., GrunR., LawsonE., AyliffeL. K., MillerG. H., DortchJ., and CresswellR. G.. 2001. Early human occupation at Devil’s Lair, southwestern Australia 50,000 years ago. Quaternary Research 55:313.
TurneyC. S., FlanneryT. F., RobertsR. G., ReidC., FifieldL.K., HighamT. F., JacobsZ., KempN., ColhounE. A., KalinR. M., and OgleN.. 2008. Late-surviving megafauna in Tasmania, Australia, implicate human involvement in their extinction. Proceedings of the National Academy of Sciences USA 105:1215012153.
UngarP. S., BrownC. A., BergstromT. S., and WalkerA.. 2003. Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning 25:185193.
UngarP. S., MerceronG., and ScottR. S.. 2007. Dental microwear texture analysis of Varswater bovids and early Pliocene paleoenvironments of Langebaanweg, Western Cape Province, South Africa. Journal of Mammalian Evolution 14:163181.
van der MerweN. J., and MedinaE.. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta 53:10911094.
WilliamsA. N. 2013. A new population curve for prehistoric Australia. Proceedings of the Royal Society of London B 280:20130486.
WroeS., and FieldJ. H.. 2006. A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation. Quaternary Science Reviews 25:26922703.
WroeS., FieldJ., FullagarR., and JerminL. S.. 2004. Megafaunal extinction in the late Quaternary and the global overkill hypothesis. Alcheringa 28:291331.
WroeS., FieldJ. H., ArcherM., GraysonD. K., PriceG. J., LouysJ., FaithJ. T., WebbG. E., DavidsonI., and MooneyS. D.. 2013. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia–New Guinea). Proceedings of the National Academy of Sciences USA 110:87778781.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 108
Total number of PDF views: 396 *
Loading metrics...

Abstract views

Total abstract views: 564 *
Loading metrics...

* Views captured on Cambridge Core between 26th January 2017 - 22nd October 2017. This data will be updated every 24 hours.