Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T03:31:26.571Z Has data issue: false hasContentIssue false

The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean

Published online by Cambridge University Press:  08 February 2016

Michael LaBarbera*
Affiliation:
Department of Anatomy, University of Chicago, 1025 E. 57th St., Chicago, Illinois 60637

Abstract

Physical models of six species of the Mesozoic bivalve genera Gryphaea, Exogyra, and Ilymatogyra and hollow hemispheres of comparable size were manufactured, the former from molds of fossil specimens. The survival (maintenance of a position within 1 cm of the sediment-water interface) of populations of these models on 3 sediment types in the lower intertidal of the Gulf of Mexico was monitored over an 18 mo period. Bulk sediment density had no detectable influence on the mean mass density (g cm−3) of the population of models which maintained position at the sediment-water interface. Increased intensity of sediment reworking strongly decreased the probability of survival of the models. Model shells took up orientations consistent with previous laboratory studies and observations of fossils preserved in situ. Some of the models were attacked and broken open by blue crabs and stone crabs, and crab predation was an important source of “mortality” of the models. These results are consistent with the hypothesis that increased sediment reworking and the evolution of durophagous predators in the Cretaceous caused the extinction of exogyrid and gryphaeid bivalves and the near-total elimination of the reclining mode of life in post-Cretaceous times.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, B. M. 1974. Flume studies on the stability of model corals as an aid to quantitative palaeoecology. Palaeogr. Palaeocl. Palaeoecol. 15:127.CrossRefGoogle Scholar
Abe, N. 1939. Migration and righting reaction of the coral, Fungia actiniformis var. palawensis Doderlein. Palao Trop. Biol. Sta. Studies. 1:671694.Google Scholar
Aller, R. C. and Dodge, R. E. 1974. Animal-sediment relations in a tropical lagoon, Discovery Bay, Jamaica. J. Mar. Res. 32:209232.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1979. The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic. Geol. Soc. Am., Abstr. with Programs. 11:383.Google Scholar
Best, B. A. 1978. The Effects of Suspension Feeding by the Bivalve Mercenaria mercenaria on Community Structure. M.S. thesis, Dept. of Zoology, Univ. of Florida, Gainesville, Fl. 39 pp.Google Scholar
Bokuniewicz, H. J., Gordon, R. B., and Rhoads, D. C. 1975. Mechanical properties of the sediment-water interface. Mar. Geol. 18:263278.CrossRefGoogle Scholar
Brasier, M. D. 1975. An outline history of sea grass communities. Palaeontology. 18:681702.Google Scholar
Case, J. 1964. Properties of the dactyl chemoreceptors of Cancer antennarius Stimpson and C. productus Randall. Biol. Bull. 127:428446.CrossRefGoogle Scholar
Chamberlain, J. A. 1976. Flow patterns and drag coefficients of cephalopod shells. Palaeontology. 19:539563.Google Scholar
Denton, E. J., Gilpin-Brown, J. B., and Shaw, T. I. 1969. A buoyancy mechanism found in cranchid squid. Proc. R. Soc. Lond. B. 174:271279.Google Scholar
Dunathan, J. P. and Ingle, R. M. 1968. Colligative properties of seawater and their importance in certain analytical procedures. Florida Bd. Cons., Div. Salt Water Fish. Leaflet Series. Vol. VI—Chemistry, pt. 1, No. 3.Google Scholar
Elner, R. W. 1978. The mechanics of predation by the shore crab, Carcinus maenas (L.), on the edible mussel, Mytilus edulis L. Oecologia. 36:333344.CrossRefGoogle Scholar
Elner, R. W. and Jamieson, G. S. 1979. Predation on sea scallops, Placopecten magellanicus, by the Rock Crab, Cancer irroratus, and the American lobster, Homarus americanus. J. Fish. Res. Bd. Canada. 36:537543.CrossRefGoogle Scholar
Fisher, D. C. 1977. Functional significance of spines in the Pennsylvanian horseshoe crab Euproops danae. Paleobiology. 3:175195.CrossRefGoogle Scholar
Galtsoff, P. S. 1964. The American oyster, Crassostrea virginica Gmelin. Fish. Bull. U.S. Fish Wildlife Serv. 64:1480.Google Scholar
Gardner, W. D. 1980a. Sediment trap dynamics and calibration: a laboratory evaluation. J. Mar. Res. 38:1739.Google Scholar
Gardner, W. D. 1980b. Field assessment of sediment traps. J. Mar. Res. 38:4152.Google Scholar
Gould, S. J. 1972. Allometric fallacies and the evolution of Gryphaea: a new interpretation based on White's criterion of geometric similarity. Pp. 91118. In: Dobzhansky, T., Hecht, M. K., and Steere, W. C., eds. Evolutionary Biology. Vol. 6, Appleton-Century-Crofts, New York.CrossRefGoogle Scholar
Hallam, A. 1968. Morphology, palaeoecology, and evolution of the genus Gryphaea in the British Lias. Phil. Trans. R. Soc. Lond. B. 254:91128.Google Scholar
Hallam, A. and Gould, S. J. 1975. The evolution of British and American middle and upper Jurassic Gryphaea: a biometric study. Proc. R. Soc. Lond. B. 189:511542.Google Scholar
Kauffman, E. G. 1972. Ptychodus predation upon a Cretaceous Inoceramus. Palaeontology. 15:429444.Google Scholar
Lerman, A. 1965. Evolution of Exogyra in the late Cretaceous of the southeastern United States. J. Paleontol. 39:414435.Google Scholar
Lewy, A. 1976. Morphology of the shell in the Gryphaeidae. Israel J. Earth-Sci. 25:4550.Google Scholar
Menzies, R. J. and Rowe, G. T. 1969. The distribution and significance of detrital turtle grass, Thalassia testudinata, on the deep-sea floor off North Carolina. Int. Rev. Ges. Hydrobiol. 54:217222.CrossRefGoogle Scholar
Neall, V. E. 1970. Notes on the ecology and paleoecology of Neothyris, an endemic New Zealand brachiopod. N.Z. J. Mar. Fresh-water Res. 4:117125.CrossRefGoogle Scholar
Pfannenstiel, M. 1928. Organisation und Entwicklung der Gryphaen. Palaeobiologica. 1:381418.Google Scholar
Pickerill, R. K. 1980. Phanerozoic flysch trace fossil diversity—observations based on an Ordovician flysch ichnofauna from the Aroostook-Matapedia Carbonate Belt of northern New Brunswick. Can. J. Earth Sci. 17:12591270.CrossRefGoogle Scholar
Powell, E. H. Jr. and Gunter, G. 1968. Observations on the Stone Crab Mennippe mercenaria Say, in the vicinity of Port Aransas, Texas. Gulf Res. Reports. 2:285299.CrossRefGoogle Scholar
Reise, K. 1978. Experiments on epibenthic predation in the Wadden Sea. Helgolander Wiss. Meeresunters. 31:55101.CrossRefGoogle Scholar
Rhoads, D. C. 1970. Mass properties, stability, and ecology of marine muds related to burrowing activity. Pp. 391406. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seele House Press; Liverpool.Google Scholar
Richardson, J. R. 1981. Brachiopods in mud: resolution of a dilemma. Science. 211:11611163.CrossRefGoogle ScholarPubMed
Richardson, J. R. and Watson, J. E. 1975. Form and function in a recent free living brachiopod Magadina cumingi. Paleobiology. 1:379387.CrossRefGoogle Scholar
Ropes, J. W. 1969. The feeding habits of the green crab, Carcinus maenas (L.). Fishery Bull. U.S. Fish Wildl. Serv. 67:183203.Google Scholar
Rosenzweig, M. L. 1975. On continental steady states of species diversity. In: Cody, M. L. and Diamond, J. M., eds. Ecology and Evolution of Communities. 544 pp. Belknap Press; Cambridge, Ma.Google Scholar
Rosewater, J. 1965. The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca. 1:347396.Google Scholar
Schafle, L. 1929. Uber Lias—Und Doggeraustern. Geol. Palaontol. Abh. (N.F.) 17:65150.Google Scholar
Seilacher, A. 1977. Evolution of trace fossil communities. In: Hallam, A., ed. Patterns of Evolution as Illustrated by the Fossil Record. Developments in Paleontology and Stratigraphy. 5. 591 pp. Elsevier North-Holland, Inc.; N.Y.Google Scholar
Seilacher, A. 1978. Evolution of trace fossil communities in the deep sea. Neues Jahrb. Geol. Palaeontol. Ab. 157:251255.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology. 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.Google Scholar
Sepkoski, J. J Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology. 7:3653.CrossRefGoogle Scholar
Siewert, W. 1972. Schalenbau und Stammesgeschichte von Austern. Stuttg. Beitr. Naturkd. Ser. B. 1:157.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1969. Biometry. 776 pp. W. H. Freeman and Co.; San Francisco.Google Scholar
Speden, I. G. 1971. Notes on New Zealand fossil Mollusca—2. Predation on New Zealand Cretaceous species of Inoceramus. N.Z. J. Geol. Geophys. 14:5670.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of Shell Form to Life Habits of the Bivalvia (Mollusca). Geol. Soc. Am., Inc. Memoir 125. 296 pp.Google Scholar
Stenzel, H. B. 1971. Oysters. In: Moore, R. C. and C. Teichert, eds. Treatise on Invertebrate Paleontology, Part N, vol. 3 (Bivalvia). 271 pp. Geol. Soc. Am., Inc. Lawrence, Kansas.Google Scholar
Tenore, K. R. 1977. Food chain pathways in detrital feeding benthic communities: a review, with new observations on sediment resuspension and detrital recycling. Pp. 3753. In: Coull, B. C., ed. Ecology of Marine Benthos. 467 pp. Univ. of South Carolina Press; Columbia, S.C.Google Scholar
Thayer, C. W. 1975. Morphologic adaptations of benthic invertebrates to soft substrata. J. Mar. Res. 33:177189.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458461.CrossRefGoogle ScholarPubMed
Trueman, A. E. 1922. The use of Gryphaea in the correlation of the Lower Lias. Geol. Mag. 59:256268.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology. 33:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. 332 pp. Harvard Univ. Press; Cambridge, Ma.Google Scholar
Virnstein, R. W. 1977. The importance of predation of crabs and fishes on benthic infauna in Chesapeake Bay. Ecology. 58:11971217.CrossRefGoogle Scholar
Welch, J. R. 1978. Flume study of simulated feeding and hydrodynamics of a Paleozoic stalked crinoid. Paleobiology. 4:8995.CrossRefGoogle Scholar
Williams, M. J. 1978. Opening of bivalve shells by the mud crab Scylla serrata Forskal. Aust. J. Mar. Freshwt. Res. 29:699702.CrossRefGoogle Scholar
Wilson, E. O. 1969. The species equlibrium. Pp. 3847. In: Woodwell, G. M., and Smith, H. H., eds. Diversity and Stability in Ecological Systems. Brookhaven Symp. Biol. No. 22.Google Scholar
Young, A. L. 1982. Larval and post larval development of the window-pane shell, Placuna placenta L. (Bivalvia: Placunidae) with a discussion of its natural settlement. The Veliger, in press.Google Scholar
Zeuner, F. 1933a. Die Lebensweise der Gryphaen. Palaeobiologica. 5:307320.Google Scholar
Zeuner, F. 1933b. Lage der Gryphaea arcuata im Sediment. Centrlbl. Mineral. Geol. Palaeont., Abt. B. Jahrg. 1933, Pp. 568574.Google Scholar