Skip to main content
×
Home
    • Aa
    • Aa

Evolution of body mass in the Pan-Alcidae (Aves, Charadriiformes): the effects of combining neontological and paleontological data

  • N. Adam Smith (a1) (a2)
Abstract
Abstract

Hypotheses regarding the evolution of many clades are often generated in the absence of data from the fossil record and potential biases introduced by exclusion of paleontological data are frequently ignored. With regard to body size evolution, extinct taxa are frequently excluded because of the lack of body mass estimates—making identification of reliable clade specific body mass estimators crucial to evaluating trends on paleontological timescales. Herein, I identify optimal osteological dimensions for estimating body mass in extinct species of Pan-Alcidae (Aves, Charadriiformes) and utilize newly generated estimates of body mass to demonstrate that the combination of neontological and paleontological data produces results that conflict with hypotheses generated when extant species data are analyzed in isolation. The wing-propelled diving Pan-Alcidae are an ideal candidate for comparing estimates of body mass evolution based only on extant taxa with estimates generated including fossils because extinct species diversity (≥31 species) exceeds extant diversity, includes examples from every extant genera, and because phylogenetic hypotheses of pan-alcid relationships are not restricted to the 23 extant species. Phylogenetically contextualized estimation of body mass values for extinct pan-alcids facilitated evaluation of broad scale trends in the evolution of pan-alcid body mass and generated new data bearing on the maximum body mass threshold for aerial flight in wing-propelled divers. The range of body mass in Pan-Alcidae is found to exceed that of all other clades of Charadriiformes (shorebirds and allies) and intraclade body mass variability is recognized as a recurring theme in the evolution of the clade. Finally, comparisons of pan-alcid body mass range with penguins and the extinct †Plotopteridae elucidate potentially shared constraints among phylogenetically disparate yet ecologically similar clades of wing-propelled divers.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. F. Anderson , H. Rahn , and H. D. Prange 1979. Scaling of Supportive Tissue Mass. Quarterly Review of Biology 54:139148.

T. Ando , and R. E. Fordyce 2013. Evolutionary drivers for flightless, wing-propelled divers in the Northern and Southern Hemispheres. Palaeogeography Palaeoclimatology Palaeoecology 400:5061.

N. P. Ashmole 1968. Body Size Prey Size and Ecological Segregation in 5 Sympatric Tropical Terns (Aves Laridae). Systematic Zoology 17:292304.

T. M. Blackburn , and K. J. Gaston 1994. The Distribution of Body Sizes of the Worlds Bird Species. Oikos 70:127130.

T. M. Blackburn , and K. J. Gaston . 1996. Spatial patterns in the body sizes of bird species in the New World. Oikos 77:436446.

R. W. Boessenecker , and N. A. Smith 2011. Latest Pacific Basin record of a bony-toothed bird (Aves, Pelagornithidae) from the Pliocene Purisima Formation of California, USA. Journal of Vertebrate Paleontology 31:652657.

N. E. Campione , and D. C. Evans 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10:60 doi: 10.1186/1741-7007-10-60.

G. J. Dyke , X. Wang , and M. B. Habib 2011. Fossil Plotopterid Seabirds from the Eo-Oligocene of the Olympic Peninsula (Washington State, USA): Descriptions and Functional Morphology. Plos One 6:e25672 doi: 10.1371/journal.pone.0025672.

K. H. Elliott , R. E. Ricklefs , A. J. Gaston , S. A. Hatch , J. R. Speakman , and G. K. Davoren 2013. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proceedings of the National Academy of Sciences of the USA 110:93809384.

R. S. Etienne , and M. E. Apol 2009. Estimating speciation and extinction rates from diversity data and the fossil record. Evolution 63:244255.

D. J. Field , C. Lynner , C. Brown , and S. A. F. Darroch 2013. Skeletal correlates for body mass estimation in modern and fossil flying birds. Plos One 8:e82000 doi:10.1371/journal.pone.0082000.

A. Grafen 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326:119157.

M. Habib 2010. The structural mechanics and evolution of aquaflying birds. Biological Journal of the Linnean Society 99:687698.

S. Hackett , R. Kimball , S. Reddy , R. Bowie , E. Braun , M. Braun , J. Chojnowski , W. Cox , K. Han , and J. Harshman 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320:1763.

G. Hardin 1960. The competitive exclusion principle. Science 131:12921297.

J. M. Hipfner , and J. M. Greenwood . 2008. Breeding biology of the Common Murre at Triangle Island, British Columbia, Canada, 2002–2007. Northwestern Naturalist 89:7684.

C. M. Hurvich , and C. L. Tsai . 1989. Regression and Time-Series Model Selection in Small Samples. Biometrika 76:297307.

C. E. Kovacs , and R. A. Meyers 2000. Anatomy and Histochemistry of Flight Muscles in a Wing-Propelled Diving Bird, the Atlantic Puffin, Fratercula arctica. Journal of Morphology 244:109125.

D. T. Ksepka 2014. Flight performance of the largest volant bird. Proceedings of the National Academy of Sciences of the United States of America 111:1062410629.

D. T. Ksepka , R. E. Fordyce , T. Ando , and C. M. Jones 2012. New Fossil Penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand Reveal the Skeletal Plan of Stem Penguins. Journal of Vertebrate Paleontology 32:235254.

B. C. Livezey 1989. Morphometric Patterns in Recent and Fossil Penguins (Aves, Sphenisciformes). Journal of Zoology 219:269307.

R. Macarthur , and R. Levins 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101:377385.

E. P. Martins , and T. F. Hansen 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149:646667.

B. A. Maurer 2013. Geographic variation in body size distributions of continental avifauna. Pp. 8394in F. A. Smith, and S. K. Lyons, eds. Animal Body Size: Linking pattern and process across space time and taxonomic group. University of Chicago Press, Chicago.

G. Mayr 2009. Paleogene fossil birds. Springer, Heidelberg.

G. Mayr , and J. Clarke 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19:527553.

C. R. McClain , and A. G. Boyer 2009. Biodiversity and body size are linked across metazoans. Proceedings of the Royal Society B 276:22092215.

J. E. McCormack , M. G. Harvey , B. C. Faircloth , N. G. Crawford , T. C. Glenn , and R. T. Brumfield 2013. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. Plos One 8:e54848 doi:10.1371/journal.pone.0054848.

S. L. Olson 1985. The fossil record of birds. Pp. 79252in D. S. Farmer, and A. King, eds. Avian Biology. Academic Press, Florida.

S. L. Olson , and Y. Hasegawa 1979. Fossil Counterparts of Giant Penguins from the North Pacific. Science 206:688689.

S. L. Olson , and Y. Hasegawa . 1996. A new genus and two new species of gigantic plotopteridae from Japan. Journal of Vertebrate Paleontology 16:742751.

M. Pagel 1999. Inferring the historical patterns of biological evolution. Nature 401:877884.

E. Paradis , J. Claude , and K. Strimmer 2004. Ape: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289.

J. F. Parham , P. C. J. Donoghue , C. J. Bell , T. D. Calway , J. J. Head , P. A. Holroyd , J. G. Inoue , R. B. Irmis , W. G. Joyce , D. T. Ksepka , J. S. L. Patane , N. D. Smith , J. E. Tarver , M. van Tuinen , Z. H. Yang , K. D. Angielczyk , J. M. Greenwood , C. A. Hipsley , L. Jacobs , P. J. Makovicky , J. Muller , K. T. Smith , J. M. Theodor , R. C. M. Warnock , and M. J. Benton 2012. Best Practices for Justifying Fossil Calibrations. Systematic Biology 61:346359.

R. A. Pyron 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.

D. L. Rabosky 2010. Extinction Rates Should Not Be Estimated from Molecular Phylogenies. Evolution 64:18161824.

H. Rahn , C. V. Paganelli , and A. Ar 1975. Relation of Avian Egg Weight to Body-Weight. Auk 92:750765.

L. J. Revell 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1:319329.

L. J. Revell 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.

F. J. Serrano , P. Palmqvist , and J. L. Sanz 2015. Multivariate analysis of neognath skeletal measurements: implications for body mass estimation in Mesozoic birds. Zoological Journal of the Linnean Society 173:929955.

S. Shaul , and D. Graur 2002. Playing chicken (Gallus gallus): methodological inconsistencies of molecular divergence date estimates due to secondary calibration points. Gene 300:5961.

G. J. Slater , L. J. Harmon , and M. E. Alfaro 2012. Integrating Fossils with Molecular Phylogenies Improves Inference of Trait Evolution. Evolution 66:39313944.

F. A. Smith , and S. K. Lyons 2013. Animal Body Size: Linking Pattern and Process Across Space. Time, and Taxonomic Group University of Chicago Press, Chicago.

F. A. Smith , S. K. Lyons , K. E. Jones , B. A. Maurer , and J. H. Brown 2013. The influence of flight on patterns of body size diversity and heritability. Pp. 187205in F. A. Smith, and S. K. Lyons, eds. Animal Body Size: Linking pattern and process across space time and taxonomic group. University of Chicago Press, Chicago.

N. A. Smith 2011b. Taxonomic revision and phylogenetic analysis of the flightless Mancallinae (Aves, Pan-Alcidae). ZooKeys 91:1116.

N. A. Smith 2013. A new species of auk (Charadriiformes, Pan-Alcidae) from the Miocene of Mexico. Condor 115:7783.

N. A. Smith 2014. The fossil record and phylogeny of the auklets (Pan-Alcidae, Aethiini). Journal of Systematic Palaeontology 12:217236.

N. A. Smith , and J. A. Clarke 2011. An alphataxonomic revision of extinct and extant razorbills (Aves, Alcidae): a combined morphometric and phylogenetic approach. Ornithological Monographs 72:161.

N. A. Smith , and J. A. Clarke . 2012. Endocranial anatomy of the Charadriiformes: sensory system variation and the evolution of wing-propelled diving. Plos One 7:e49584 doi: 10.1371/journal.pone.0049584.

N. A. Smith , and J. A. Clarke . 2014. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness. The Anatomical Record 297:188199.

N. A. Smith , and J. A. Clarke . 2015. Systematics and evolution of the Pan-Alcidae (Aves, Charadriiformes). Journal of Avian Biology 46:125140.

J. J. Wiens 2009. Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Systematic Biology 58:8799.

J. J. Wiens , C. A. Kuczynski , T. Townsend , T. W. Reeder , D. G. Mulcahy , and J. W. Sites 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59:674688.

K. Wojczulanis-Jakubas , D. Jakubas , J. Welcker , A. M. A. Harding , N. J. Karnovsky , D. Kidawa , H. Steen , L. Stempniewicz , and C. J. Camphuysen 2010. Body size variation of a high-Arctic seabird: the dovekie (Alle alle). Polar Biology 34:847854.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 10
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 219 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th July 2017. This data will be updated every 24 hours.