Skip to main content
×
×
Home

Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales

  • Mario Coiro (a1), Guillaume Chomicki (a2) and James A. Doyle (a3)
Abstract

The placement of angiosperms and Gnetales in seed plant phylogeny remains one of the most enigmatic problems in plant evolution, with morphological analyses (which have usually included fossils) and molecular analyses pointing to very distinct topologies. Almost all morphology-based phylogenies group angiosperms with Gnetales and certain extinct seed plant lineages, while most molecular phylogenies link Gnetales with conifers. In this study, we investigate the phylogenetic signal present in published seed plant morphological data sets. We use parsimony, Bayesian inference, and maximum-likelihood approaches, combined with a number of experiments with the data, to address the morphological–molecular conflict. First, we ask whether the lack of association of Gnetales with conifers in morphological analyses is due to an absence of signal or to the presence of competing signals, and second, we compare the performance of parsimony and model-based approaches with morphological data sets. Our results imply that the grouping of Gnetales and angiosperms is largely the result of long-branch attraction (LBA), consistent across a range of methodological approaches. Thus, there is a signal for the grouping of Gnetales with conifers in morphological matrices, but it was swamped by convergence between angiosperms and Gnetales, both situated on long branches. However, this effect becomes weaker in more recent analyses, as a result of addition and critical reassessment of characters. Even when a clade including angiosperms and Gnetales is still weakly supported by parsimony, model-based approaches favor a clade of Gnetales and conifers, presumably because they are more resistant to LBA. Inclusion of fossil taxa weakens rather than strengthens support for a relationship of angiosperms and Gnetales. Our analyses finally reconcile morphology with molecules in favoring a relationship of Gnetales to conifers, and show that morphology may therefore be useful in reconstructing other aspects of the phylogenetic history of the seed plants.

Copyright
References
Hide All
Albert, V. A., Backlund, A., Bremer, K., Chase, M. W., Manhart, J. R., Mishler, B. D., and Nixon, K. C.. 1994. Functional constraints and rbcL evidence for land plant phylogeny. Annals of the Missouri Botanical Garden 81:534567.
Axsmith, B. J., Taylor, E. L., Taylor, T. N., and Cuneo, N. R.. 2000. New perspectives on the Mesozoic seed fern order Corystospermales based on attached organs from the Triassic of Antarctica. American Journal of Botany 87:757768.
Bateman, R. M., Hilton, J., and Rudall, P. J.. 2006. Morphological and molecular phylogenetic context of the angiosperms: contrasting the “top-down” and “bottom-up” approaches used to infer the likely characteristics of the first flowers. Journal of Experimental Botany 57:34713503.
Bauch, J., Liese, W., and Schultze, R.. 1972. The morphological variability of the bordered pit membranes in gymnosperms. Wood Science and Technology 6:165184.
Bergsten, J. 2005. A review of long-branch attraction. Cladistics 21:163193.
Bomfleur, B., Decombeix, A.-L., Schwendemann, A. B., Escapa, I. H., Taylor, E. L., Taylor, T. N., and McLoughlin, S.. 2014. Habit and ecology of the Petriellales, an unusual group of seed plants from the Triassic of Gondwana. International Journal of Plant Sciences 175:10621075.
Bomfleur, B., Grimm, G. W., and McLoughlin, S.. 2017. The fossil Osmundales (Royal Ferns)—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes. PeerJ 5:e3433.
Bowe, L. M., Coat, C., and dePamphilis, C. W.. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences USA 97:40924097.
Brinkmann, H., van der Giezen, M., Zhou, Y., de Raucourt, G. P., and Philippe, H.. 2005. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Systematic Biology 54:743757.
Brown, J. W., Parins-Fukuchi, C., Stull, G. W., Vargas, O. M., and Smith, S. A.. 2017. Bayesian and likelihood phylogenetic reconstructions of morphological traits are not discordant when taking uncertainty into consideration: a comment on Puttick et al. Proceedings of the Royal Society of London B 284:20170986.
Bryant, D., and Moulton, V.. 2004. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21:255265.
Burleigh, J. G., and Mathews, S.. 2007. Assessing systematic error in the inference of seed plant phylogeny. International Journal of Plant Sciences 168:125135.
Cantino, P. D., Doyle, J. A., Graham, S. W., Judd, W. S., Olmstead, R. G., Soltis, D. E., Soltis, P. S., and Donoghue, M. J.. 2007. Towards a phylogenetic nomenclature of Tracheophyta . Taxon 56:822846.
Carlquist, S. 1996. Wood, bark, and stem anatomy of Gnetales: a summary. International Journal of Plant Sciences 157(6, Suppl.) S58S76.
Cau, A., Brougham, T., and Naish, D.. 2015. The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): dromaeosaurid or flightless bird? PeerJ 3:e1032.
Chaw, S.-M., Parkinson, C. L., Cheng, Y., Vincent, T. M, and Palmer, J. D.. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences USA 97:40864091.
Coiro, M., and Pott, C.. 2017. Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia? BMC Evolutionary Biology 17:97.
Cox, C. J., Li, B., Foster, P. G., Embley, T. M., and Civáň, P.. 2014. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Systematic Biology 63:272279.
Crane, P. R. 1985a. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden 72:716793.
Crane, P. R. 1985b. Phylogenetic relationships in seed plants. Cladistics 1:329348.
Crepet, W. L., and Stevenson, D. W.. 2010. The Bennettitales (Cycadeoidales): a preliminary perspective on this arguably enigmatic group. Pp 215244 in C. T. Gee, ed. Plants in Mesozoic time: morphological innovations, phylogeny, ecosystems. Indiana University Press, Bloomington.
Dembo, M., Radovčić, D., Garvin, H. M., Laird, M. F., Schroeder, L., Scott, J. E., Brophy, J., Ackermann, R. R., Musiba, C. M., de Ruiter, D. J., and Mooers, A. Ø. 2016. The evolutionary relationships and age of Homo naledi: an assessment using dated Bayesian phylogenetic methods. Journal of Human Evolution 97:1726.
Denk, T., and Grimm, G. W.. 2009. The biogeographic history of beech trees. Review of Palaeobotany and Palynology 158:83100.
Donoghue, M. J., and Doyle, J. A.. 2000. Seed plant phylogeny: demise of the anthophyte hypothesis? Current Biology 10:R106R109.
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T.. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 20:431460.
Doyle, J. A. 1996. Seed plant phylogeny and the relationships of the Gnetales. International Journal of Plant Sciences 157(6, Suppl.) S3S39.
Doyle, J. A. 2006. Seed ferns and the origin of the angiosperms. Journal of the Torrey Botanical Society 133:169209.
Doyle, J. A. 2008. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. International Journal of Plant Sciences 169:816843.
Doyle, J. A. 2012. Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth and Planetary Sciences 40:301326.
Doyle, J. A. 2013. Phylogenetic analyses and morphological innovations in land plants. In B. A. Ambrose, and M. Purugganan, eds. The evolution of plant form. Annual Plant Reviews 45:150. Wiley-Blackwell, Oxford.
Doyle, J. A., and Donoghue, M. J.. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52:321431.
Doyle, J. A., and Donoghue, M. J.. 1987. The importance of fossils in elucidating seed plant phylogeny and macroevolution. Review of Palaeobotany and Palynology 50:6395.
Doyle, J. A., and Donoghue, M. J.. 1992. Fossils and seed plant phylogeny revisited. Brittonia 44:89106.
Doyle, J. A., and Endress, P. K.. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences 161(6, Suppl.) S121S153.
Doyle, J. A., and Endress, P. K.. 2014. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. International Journal of Plant Sciences 175:555600.
Endress, P. K., and Doyle, J. A.. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany 96:2266.
Felsenstein., J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401410.
Foley, N. M., Springer, M. S., and Teeling, E. C.. 2016. Mammal madness: is the mammal tree of life not yet resolved? Philosophical Transactions of the Royal Society of London B 371:20150140.
Friis, E. M., Doyle, J. A., Endress, P. K., and Leng, Q.. 2003. Archaefructus—angiosperm precursor or specialized early angiosperm? Trends in Plant Science 8:369373.
Friis, E. M., Crane, P. R., Pedersen, K. R., Bengtson, S., Donoghue, P. J. C., Grimm, G. W., and Stampanoni, M.. 2007. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450:549552.
Friis, E. M., Pedersen, K. R., and Crane, P. R.. 2009. Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. American Journal of Botany 96:252283.
Gauthier, J., Kluge, A. G., and Rowe, T.. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105209.
Gauthier, J., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B.. 2012. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53:3308.
Givnish, T. J., and Sytsma, K. J. eds. 1997. Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge.
Godefroit, P., Cau, A., Hu, D.-Y., Escuillié, F., Wu, W., and Dyke, G.. 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498:359362.
Grimm, G. 2017. Should we try to infer trees on tree-unlikely matrices? The Genealogical World of Phylogenetic Networks. http://phylonetworks.blogspot.com/2017/07/should-we-try-to-infer-trees-on.html, accessed 5 July 2017.
Gugerli, F., Sperisen, C., Büchler, U., Brunner, I., Brodbeck, S., Palmer, J. D., and Qiu, Y.-L.. 2001. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Molecular Phylogenetics and Evolution 21:167175.
Hamby, R.K., and Zimmer, E. A.. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 5091 in P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds. Molecular systematics of plants. Chapman and Hall, New York.
Harris, T. M. 1954. Mesozoic seed cuticles. Svensk Botanisk Tidskrift 48:281291.
Hill, C.R., and Crane, P. R.. 1982. Evolutionary cladistics and the origin of angiosperms. In K. A. Joysey, and A. E. Friday, eds. Problems of phylogenetic reconstruction. Systematics Association Special Volume 21:269361. Academic Press, London.
Hilton, J., and Bateman, R. M.. 2006. Pteridosperms are the backbone of seed plant phylogeny. Journal of the Torrey Botanical Society 133:119168.
Holland, B., Huber, K. T., Moulton, V., and Lockhart, P. J.. 2004. Using consensus networks to visualize contradictory evidence for species phylogeny. Molecular Biology and Evolution 21:14591461.
Huson, D.H., and Bryant, D.. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23:254267.
Jenner, R. A. 2004. Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Systematic Biology 53:333359.
Kass, R. E., and Raftery, A. E.. 1995. Bayes factors. Journal of the American Statistical Association 90:773795.
Kelley, D. R., and Gasser, C. S.. 2009. Ovule development: genetic trends and evolutionary considerations. Sexual Plant Reproduction 22:229234.
Klavins, S. D., Taylor, T. N., and Taylor, E. L.. 2002. Anatomy of Umkomasia (Corystospermales) from the Triassic of Antarctica. American Journal of Botany 89:664676.
Lee, M. S., and Palci, A.. 2015. Morphological phylogenetics in the genomic age. Current Biology 25:R922R929.
Lee, M. S., and Worthy, T. H.. 2012. Likelihood reinstates Archaeopteryx as a primitive bird. Biology Letters 8:299303.
Lee, M.S., Cau, A., Naish, D., and Dyke, G.J.. 2014. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345:562566.
Legg, D. A., Sutton, M. D., and Edgecombe, G. D.. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications 4:2485.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913925.
Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character‐taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society 118:131151.
Lockhart, P. J., and Cameron, S. A.. 2001. Trees for bees. Trends in Ecology and Evolution 16:8488.
Maddison, D. R., and Maddison, W. P.. 2003. MacClade 4: analysis of phylogeny and character evolution, version 4.06. Sinauer, Sunderland, Mass.
Magallón, S. 2010. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Systematic Biology 59:384399.
Magallón, S., and Sanderson, M. J.. 2002. Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. American Journal of Botany 89:19912006.
Magallón, S., Hilu, K. W., and Quandt, D.. 2013. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. American Journal of Botany 100:556573.
Martens, P. 1971. Les Gnétophytes. Encyclopedia of plant anatomy 12(2). Borntraeger, Stuttgart.
Mathews, S. 2009. Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. American Journal of Botany 96:228236.
Mathews, S., and Kramer, E.. 2012. The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytologist 194:910923.
Mathews, S., Clements, M. D., and Beilstein, M. A.. 2010. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philosophical Transactions of the Royal Society of London B 365:383395.
Müller, K. F. 2005. The efficiency of different search strategies for estimating parsimony, jackknife, bootstrap, and Bremer support. BMC Evolutionary Biology 5:58.
Mundry, M., and Stützel, T.. 2004. Morphogenesis of the reproductive shoots of Welwitschia mirabilis and Ephedra distachya (Gnetales), and its evolutionary implications. Organisms Diversity and Evolution 4:91108.
Nickrent, D. L., Parkinson, C. L., Palmer, J. D., and Duff, R. J.. 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Molecular Biology and Evolution 17:18851895.
Nixon, K. C., Crepet, W. L., Stevenson, D. W., and Friis, E. M.. 1994. A reevaluation of seed plant phylogeny. Annals of the Missouri Botanical Garden 81:484533.
O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P., Goldberg, S. L., Kraatz, B. P., Luo, Z.-X., Meng, J., Ni, X., Novacek, M. J., Perini, F. A., Randall, Z. S., Rougier, G. W., Sargis, E. J., Silcox, M. T., Simmons, N. B., Spaulding, M., Velazco, P. M., Weksler, M., Wible, J. R., and Cirranello, A. L.. 2013. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662667.
O’Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D., and Donoghue, P. C. J.. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters 12:20160081.
Parenti, L. R. 1980. A phylogenetic analysis of the land plants. Biological Journal of the Linnean Society 13:225242.
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics 12:195223.
Pott, C. 2016. Westersheimia pramelreuthensis from the Carnian (Upper Triassic) of Lunz, Austria: more evidence for a unitegmic seed coat in early Bennettitales. International Journal of Plant Sciences 177:771791.
Puttick, M. N., O’Reilly, J. E., Oakley, D., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L. A., Tarver, J. E., Pisani, D., and Donoghue, P. C. J.. 2017a. Parsimony and maximum-likelihood phylogenetic analyses of morphology do not generally integrate uncertainty in inferring evolutionary history: a response to Brown et al. Proceedings of the Royal Society of London B 284:20171636.
Puttick, M. N., O’Reilly, J. E., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L. A., Tarver, J. E., Pisani, D., and Donoghue, P. C. J.. 2017b. Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society of London B 284:20162290.
Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.
Pyron, R. A. 2015. Post-molecular systematics and the future of phylogenetics. Trends in Ecology and Evolution 30:384389.
Qiu, Y.-L., Li, L., Wang, B., Chen, Z., Dombrovska, O., Lee, J., Kent, L., Li, L., Jobson, R. W., Hendry, T. A., Taylor, D. W., Testa, C. M., and Ambros, M.. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences 168:691708.
Rambaut, A., and Drummond, A. J.. 2007. Tracer: MCMC trace analysis tool, Version 1.4.1. http://tree.bio.ed.ac.uk/software.
R Core Team 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P.. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61:973999.
Rota-Stabelli, O., Kayal, E., Gleeson, D., Daub, J., Boore, J. L., Telford, M. J., Pisani, D., Blaxter, M., and Lavrov, D. V.. 2010. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biology and Evolution 2:425440.
Rothwell, G. W., and Serbet, R.. 1994. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Systematic Botany 19:443482.
Rothwell, G. W., and Stockey, R. A.. 2013. Evolution and phylogeny of Gnetophytes: evidence from the anatomically preserved seed cone Protoephedrites eamesii gen. et sp. nov. and the seeds of several bennettitalean species. International Journal of Plant Sciences 174:511529.
Rothwell, G. W., and Stockey, R. A.. 2016. Phylogenetic diversification of Early Cretaceous seed plants: the compound seed cone of Doylea tetrahedrasperma . American Journal of Botany 103:923937.
Rothwell, G. W., Crepet, W. L., and Stockey, R. A.. 2009. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. American Journal of Botany 96:296322.
Rudall, P. J., and Bateman, R. M.. 2010. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. Philosophical Transactions of the Royal Society of London B 365:397409.
Rydin, C., and Källersjö, M.. 2002. Taxon sampling and seed plant phylogeny. Cladistics 18:484513.
Rydin, C., Källersjö, M., and Friis, E. M.. 2002. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. International Journal of Plant Sciences 163:197214.
Sanderson, M. J., Wojciechowski, M. F., Hu, J.-M., Sher Khan, T., and Brady, S. G.. 2000. Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. Molecular Biology and Evolution 17:782797.
Scotland, R. W., Olmstead, R. G., and Bennett, J. R.. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52:539548.
Singh, H. 1978. Embryology of gymnosperms (Handbuch der Pflanzenanatomie 10(2) Borntraeger, Berlin.
Springer, M. S., Burk-Herrick, A., Meredith, R., Eizirik, E., Teeling, E., O’Brien, S. J., and Murphy, W. J.. 2007. The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology 56:673684.
Springer, M. S., Meredith, R. W., Teeling, E. C., and Murphy, W. J.. 2013. Technical comment on “The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 341:613.
Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:13121313.
Stefanovic, S., Jager, M., Deutsch, J., Broutin, J., and Masselot, M.. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85:688697.
Stockey, R. A., and Rothwell, G. W.. 2003. Anatomically preserved Williamsonia (Williamsoniaceae): evidence for bennettitalean reproduction in the Late Cretaceous of western North America. International Journal of Plant Sciences 164:251262.
Stockey, R. A., and Rothwell, G. W.. 2009. Distinguishing angiophytes from the earliest angiosperms: a Lower Cretaceous (Valanginian-Hauterivian) fruit-like reproductive structure. American Journal of Botany 96:323335.
Sun, G., Ji, Q., Dilcher, D. L., Zheng, S., Nixon, K. C., and Wang, X.. 2002. Archaefructaceae, a new basal angiosperm family. Science 296:899904.
Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods), Version 4. Sinauer, Sunderland, Mass.
Swofford, D. L., Waddell, P. J., Huelsenbeck, J. P., Foster, P. G., Lewis, P. O., and Rogers, J. S.. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Systematic Biology 50:525539.
Taylor, E. L., and Taylor, T. N.. 1992. Reproductive biology of the Permian Glossopteridales and their suggested relationship to flowering plants. Proceedings of the National Academy of Sciences USA 89:1149511497.
Taylor, T. N., Del Fueyo, G. M., and Taylor, E. L.. 1994. Permineralized seed fern cupules from the Triassic of Antarctica: implications for cupule and carpel evolution. American Journal of Botany 81:666677.
Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221244.
Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny, L., Shaw, A. J., DeGironimo, L., Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Chen, T., Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G. K. S., and Leebens-Mack., J. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA 111:E4859E4868.
Wieland, G. R. 1916. American fossil cycads, Vol. 2. Taxonomy. Carnegie Institution of Washington, Washington, D.C.
Wiens, J. J. 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Systematic Biology 54:731742.
Wiens, J. J., and Hollingsworth, B. D.. 2000. War of the iguanas: conflicting phylogenies, long-branch attraction, and disparate rates of molecular and morphological evolution in iguanid lizards. Systematic Biology 49:6985.
Wiens, J. J., and Tiu, J.. 2012. Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS ONE 7:e42925.
Wiens, J. J., Chippindale, P. T., and Hillis, D. M.. 2003. When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. Systematic Biology 52:501514.
Wright, A. M., and Hills, D. M.. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210.
Wright, A. M., Lloyd, G. T., and Hillis, D. M.. 2015. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Systematic Biology 65:602611.
Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M.-H.. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60:150160.
Zander, R. H. 2004. Minimal values of reliability of bootstrap and jackknife proportions, decay index, and Bayesian posterior probability. PhyloInformatics 2:113.
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., and Ronquist, F.. 2016. Total-evidence dating under the fossilized birth-death process. Systematic Biology 65:228249.
Zhong, B., Deusch, O., Goremkin, V. V., Penny, D., Briggs, P. J., Atherton, R. A., Nikiforova, S. V., and Lockhart, P. J.. 2011. Systematic error in seed plant phylogenomics. Genome Biology and Evolution 3:13401348.
Zou, Z., and Zhang, J.. 2016. Morphological and molecular convergences in mammalian phylogenetics. Nature Communications 7:12758.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
UNKNOWN
Supplementary materials

Coiro et al. supplementary material
Coiro et al. supplementary material 1

 Unknown (14 KB)
14 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed