Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T10:49:03.224Z Has data issue: false hasContentIssue false

Exploration of the Oxynoticeratidae ornamental morphospace using the discrete cosine transform (DCT) to analyze rib patterns

Published online by Cambridge University Press:  08 April 2016

Jean-Louis Dommergues
Affiliation:
Biogéosciences (UMR CNRS 5561), Centre des Sciences de la Terre, Université de Bourgogne, boulevard Gabriel 6, F-21000 Dijon, France. E-mail: Jean-Louis.Dommergues@u-bourgogne.fr
Cyril H. Dommergues
Affiliation:
Biogéosciences (UMR CNRS 5561), Centre des Sciences de la Terre, Université de Bourgogne, boulevard Gabriel 6, F-21000 Dijon, France. E-mail: Jean-Louis.Dommergues@u-bourgogne.fr
Christian Meister
Affiliation:
Muséum d'histoire naturelle de Genève, Département de Géologie et de Paléontologie, route de Malagnou 1, CH-1211 Geneva, Switzerland. E-mail: christian.meister@mhn.ville-ge.ch

Abstract

The discrete cosine transform (DCT) is a Fourier-related transform widely used in signal processing and well suited to analyzing open outlines such as ammonite ribs. The method is applied here to depict and decipher the ribbing morphospace of a large group of Lower Jurassic ammonites composed of the Oxynoticeratidae and their close ancestors. Because they are clearly associated with buoyancy and/or swimming ability, the usually clearly involute, comparatively smooth and compressed shells of these ammonites may well be misleading taxonomic markers. In this context, quantitative analysis of the ribbing pattern using the DCT may significantly improve our perception of the ornamental patterns expressed within the group. A set of 251 specimens illustrating the worldwide fauna and selected from more than 80 publications is analyzed. Big differences are found in the evolutionary patterns of the two main lineages of Oxynoticeratidae currently accepted in the literature. A previously unsuspected Mediterranean group comprising principally the genus Parasteroceras is identified from its distinctive ornamentation. The northwest European and Mediterranean genera Eparietites, Oxynoticeras, and Parasteroceras do not feature among the American (East Pacific) faunas. This finding calls into question some generally accepted correlations between European and American stratigraphic frameworks. The study shows that the DCT is a valuable tool for discriminating between species within the huge and often puzzling range of ornamental variation of the main genera (e.g., Gleviceras and Radstockiceras).

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anstey, R. L., and Delmet, D. A. 1973. Fourier analysis of zooecial shapes in fossil tubular Bryozoans. Geological Society of America Bulletin 84:17531764.Google Scholar
Arkell, W. J., Kummel, B., and Wright, C. W. 1957. Mesozoic Ammonoidea. Pp. L80L456 in Arkell, W. J., et al. Mollusca 4, Cephalopoda, Ammonoidea. Part L of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bookstein, F. L., Chernoff, B., Elder, R. L., Humphries, J. M., Smith, G. R., and Strauss, R. E. 1985. Morphometrics in evolutionary biology. Academy of Natural Sciences of Philadelphia Special Publication 15.Google Scholar
Caloo, B. 1971, Caractères morphologiques non mesurables chez les Graphoceratinés (Ammonitina) (Aalénien au Nord de Digne, Basse-Alpes, France). Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon 45:118.Google Scholar
Dommergues, J.-L., and Meister, C. 1999. Cladistic formalisation of relationships within a superfamily of lower Jurassic Ammonitina: Eoderocerataceae Spath, 1929. Revue de Paléobiologie 18:273286.Google Scholar
Dommergues, J.-L., Ferretti, A., and Mouterde, R. 1990. Des morphologies “Fuciniceras“ platycônes aux morphologies “Proto-grammoceras“ sub-oxycônes. Réflexions sur les rôles des transformations de l'ontogenèse et de leur implications morpho-fonctionnelles. Pp. 229251 in Pallini, G., Cecca, F., Cresta, S., and Santantonio, M., eds. Fossili, Evoluzione, Ambiente. Atti del secondo convengo internazionale Pergola 25–30 ottobre 1987. Comitato Centenario Raffaele Piccinini Pergola.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.CrossRefGoogle Scholar
Donovan, D. T. 1987. Evolution of the Arietitidae and their descendants. Pp. 123138 in Almeras, Y. and Ruget, C., eds. Deuxième colloque du Centre International d'Etude du Lias (C.I.E.L.), Lyon 27–30 Mai 1996. Les Cahiers de l'Institut Catholique de Lyon, Série Sciences, Lyon.Google Scholar
Donovan, D. T. 1994. Evolution in some early Jurassic ammonites: Asteroceratinae, Oxnoticeratidae and related forms. In Pallini, G., ed. Proceedings of the Third Pergola International Symposium “Fossili, Evolution, Ambiente,” October 1990. Palaeopelagos Special Publication 1:383396. Rome.Google Scholar
Donovan, D. T., and Forsey, G. F. 1973. Systematics of Lower Liassic Ammonitina. University of Kansas Paleontological Contributions 64:118.Google Scholar
Donovan, D. T., Callomon, J. H., and Howarth, M. K. 1981. Classification of the Jurassic Ammonitina. Pp. 101155 in House, M. R. and Senior, J. R., eds. The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Academic Press, London.Google Scholar
El Hariri, K. 2001. Analyse morphométrique des côtes chez des Graphoceratidae (Ammonitina) du Maroc. Revue de Paléobiologie 20:367376.Google Scholar
El Hariri, K., and Bachnou, A. 2004. Describing ammonite shape using Fourier analysis. Journal of African Earth Sciences 39:347352.Google Scholar
El Hariri, K., Neige, P., and Dommergues, J.-L. 1996. Morphométrie des côtes chez les Harpoceratinae (Ammonitina) pliensbachiens. Comparaison des formes du Haut-Atlas (Maroc) avec celles de l'Apennin Central (Italie). Comptes Rendus de l'Académie des Sciences Paris (série IIa) 322:693700.Google Scholar
Frebold, H. 1967. Position of the Lower Jurassic genus Fanninoceras McLearn and the age of the Maude formation on Queen Charlotte Islands. Canadian Journal of Earth Sciences 4:11451149.CrossRefGoogle Scholar
Gonzalez, R. C., and Woods, R. E. 2002. Digital image processing, 2d ed. Prentice-Hall, Upper Saddle River, NJ. Google Scholar
Hillebrandt, A. von. 1981. Faunas de Amonites del Liasico inferior y medio (Hettangiano hasta Pliensbachiano) de América del Sur (excluyendo Argentina). Pp. 499537 in Volkheimer, W. and Musacchio, E. A., eds. Cuncas sedimentarias del Jurasico y Cretacico de América del Sur. Comité Sudamericano del Jurasico y Cretacico, Buenos Aires.Google Scholar
Hillebrandt, A. von 2002. Ammoniten aus dem oberen Sinemurium von Südamericka. Revue de Paléobiologie 21:35147.Google Scholar
Hyatt, A. 1889. Genesis of the Arietitidae. Smithsonian Contributions to Knowledge 26:1238.Google Scholar
Imlay, R. W. 1981. Early Jurassic Ammonites from Alaska. U.S. Geological Survey Professional Paper 1148:149.Google Scholar
Lachkar, N., Dommergues, J.-L., Meister, C., Izard, A., and Lang, J. 1998. Les ammonites du Sinémurien supérieur du Jebel Bou-Hamid (Haut-Atlas central, Rich, Maroc). Approches paléontologique et biostratigraphique. Geobios 31:587619.Google Scholar
Neige, P., and Dommergues, J.-L. 1995. Morphometrics and phenetic versus cladistic analysis of the early Harpoceratinae (Pliensbachian ammonites). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 196:411438.Google Scholar
Pia, J. von. 1913. Über eine mittleliasische Cephalopodenfauna aus dem nördostlischen Kleinasien. Naturhistorisches Hofmuseum in Wien, Annalen 27:335398.Google Scholar
Pia, J. von 1914. Untersuchungen über die Gattung Oxynoticeras und einige damit zusammenhängende allgemeine Fragen. Abhandlungen der Kaiserlisch-königlichen Geologischen Reichsanstalt 23:1179.Google Scholar
Quinzio Sinn, L. A. 1987. Stratigraphische untersuchungen im Unterjura des Südteils der Provinz Antofagasta in Nord-Chile. Berliner Geowissenschaftliche Abhandlungen A 87:1100.Google Scholar
Rakus, M. 1994. Les ammonites lotharingiennes du jebel Bou Hamid (Haut-Atlas de Rich Maroc). In Pallini, G., ed. Proceedings of the Third Pergola International Symposium “Fossili, Evolution, Ambiente,” October 1990. Palaeopelagos Special Publication 1:299316. Rome.Google Scholar
Rakus, M., and Guex, J. 2002. Les ammonites du Jurassique inférieur et moyen de la dorsale tunisienne. Mémoires de Géologie Lausanne 39:1217.Google Scholar
Rao, K., and Yip, P. 1990. Discrete cosine transform: algorithms, advantages, applications. Academic Press, Boston.Google Scholar
Renaud, S., Michaux, J., Jaeger, J.-J., and Auffray, J.-C. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology 22:255265.Google Scholar
Rouget, I., Neige, P., and Dommergues, J.-L. 2004. L'analyse phylogénétique chez les ammonites. Etat des lieux et perspectives. Bulletin de la Société Géologique de France 175:507512.Google Scholar
Smith, P. L. and Tipper, H. W. 1996. Pliensbachian (Lower Jurassic) Ammonites of the Queen Charlotte Islands, British Columbia. Bulletins of American Paleontology 108:1122.Google Scholar
Sowerby, J. 1812–1823. The mineral conchology of Great Britain, Vols. 1–4 (part.), Plates 1–383. London.Google Scholar
Sowerby, J. de C. 1823–1846. The mineral conchology of Great Britain, Vol. 4 (part.)-7, Pl. 384648. London.Google Scholar
Spath, L. F. 1913. On the Jurassic ammonites from the Jebel Zaghuan (Tunisia). Quarterly Journal of the Geological Society of London 69:540580.Google Scholar
Spath, L. F. 1923. Shales-with-Beef, a sequence in the lower Lias of the Dorset Coast, Part II. Palaeontology. Quarterly Journal of the Geological Society of London 79:6688.Google Scholar
Weisstein, E. W. 2005. Star Convex. MathWorld (Wolfram web resource). http://mathworld.wolfram.com/StarConvex.html.Google Scholar
Westermann, G. E. G. 1996: Ammonoid life and habitat. Pp. 607707 in Landman, N., Tanabe, K., and Davis, R. A., eds. Ammonoid paleobiology. Topics in geobiology, Vol. 13. Plenum, New York.Google Scholar
Younger, J. L., and Ehrlich, R., 1977. Fourier biometric: harmonic amplitudes as multivariate shape descriptors. Systematic Zoology 26:336342.CrossRefGoogle Scholar
Hillebrandt, A. von. 1987. Liassic ammonite zones of South America and correlations with other provinces. Pp. 111157 in Volkheimer, W., ed. Bioestratigrafía de los sistemas regionales del Jurásico y Cretácico de América del Sur, Vol. 1. Mendoza, Argentina.Google Scholar
Supplementary material: PDF

Dommergues et al. supplementary material

Appendix

Download Dommergues et al. supplementary material(PDF)
PDF 40.3 KB