Skip to main content
×
Home
    • Aa
    • Aa

High-latitude settings promote extreme longevity in fossil marine bivalves

  • David K. Moss (a1), Linda C. Ivany (a2), Robert B. Silver (a3), John Schue (a4) and Emily G. Artruc (a5)...
Abstract
Abstract

One of the longest-lived, noncolonial animals on the planet today is a bivalve that attains life spans in excess of 500 years and lives in a cold, seasonally food-limited setting. Separating the influence of temperature and food availability on life span in modern settings is difficult, as these two conditions covary. The life spans of fossil animals can provide insights into the role of environment in the evolution of extreme longevity that are not available from studies of modern taxa. We examine bivalves from the unique, nonanalogue, warm and high-latitude setting of Seymour Island, Antarctica, during the greenhouse intervals of the Late Cretaceous and Paleogene. Despite significant sampling limitations, we find that all 11 species examined are both slow growing and long-lived, especially when compared with modern bivalves living in similar temperature settings. While cool temperatures have long been thought to be a key factor in promoting longevity, our findings suggest an important role for caloric restriction brought about by the low and seasonal light regime of the high latitudes. Our life-history data, spanning three different families, emphasize that longevity is in part governed by environmental rather than solely phylogenetic or ecologic factors. Such findings have implications for both modern and ancient latitudinal diversity gradients, as a common correlate of slow growth and long life is delayed reproduction, which limits the potential for evolutionary change. While life spans of modern bivalves are well studied, data on life spans of fossil bivalves are sparse and largely anecdotal. Life histories of organisms from deep time can not only elucidate the controls on life span but also add a new dimension to our understanding of macroevolutionary patterns.

Copyright
References
Hide All
AbeleD., StrahlJ., BreyT., and PhilippE.. 2008. Imperceptible senescene: ageing in the ocean quahog Arctica islandica . Free Radical Research 42:474480.
AbeleD., BreyT., and PhilippE.. 2009. Bivalve models of aging and the determination of molluscan lifespans. Experimental Gerontology 44:307315.
AhnI., SurhJ., ParkY., KwonH., ChoiK., KangS., ChoiH., KimK., and ChungH.. 2003. Growth and seasonal energetics of the Antarctic bivalve Laternuala elliptica from King George Island, Antarctica. Marine Ecology Progress Series 257:99110.
AlroyJ. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.
AlvarezM., Del RioC. J., and MarenssiS.. 2014. Revision del genero Retrotapes del Rio (Bivalvia:Veneridae) en el Eoceno de la Antartida. Ameghiniana 51:6178.
AlvarezM. J., and PérezD. E.. 2016. Gerontic intraspecific variation in the Antarctic bivalve Retrotapes antarcticus . Ameghiniana 53:485494.
AmbroseW. G., RenaudP. E., LockeW. L., CottierF. R., BergeJ., CarrollM. L., LevinB., and RyanS.. 2011. Growth line deposition and variability in growth of two circumpolar bivalves (Serripes groenlandicus, and Clinocardium ciliatum). Polar Biology 35:345354.
AronsonR. B., BlakeD. B., and OjiT.. 1997. Retrograde community structure in the late Eocene of Antarctica. Geology 25:903906.
AronsonR. B., MoodyR. M., IvanyL. C., BlakeD. B., WernerJ. E., and GlassA.. 2009. Climate change and trophic response of the Antarctic bottom fauna. PLoS ONE 4:e4385.
ArrigoK. R., van DijkenG. L., and BushinskyS.. 2008. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research 113:127.
AustadS. N. 1989. Life extension by dietary restriction in the bowl and doil spider, Frontinella pyramitela . Experimental Gerontology 24:8392.
BarnesD. K. A., and ClarkeA.. 1995. Seasonality of feeding activity in Antarctic suspension feeders. Polar Biology 15:335340.
BeardJ. A., IvanyL. C., and RunnegarB.. 2015. Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia. Earth and Planetary Science Letters 425:219231.
BeierleinL., NehrkeG., TrofimovaT., and BreyT.. 2015. Bivalve shells—unique high-resolution archives of the environmental past. Pp. 173182. in G. Lohman, H. Meggers, V. Unnithan, D. Wolf-Gladrow, J. Notholt, and A. Bracher, eds. Towards an interdisciplinary approach in Earth system science. Springer International, Cham, Switzerland.
BeldingD 1910. The growth and habits of the sea clam (Macta solidissima). Reports of the Commissioner of Fish and Game, 1909. Pp. 26–41.
BerkeS. K., JablonskiD., KrugA. Z., RoyK., and TomasovychA.. 2013. Beyond Bergmann’s rule: size-latitude relationships in marine Bivalvia world-wide. Global Ecology and Biogeography 22:173183.
BertnessM. D., GarrityS. D., and LevingsS. C.. 1981. Predation pressure and gastropod foraging: a tropical-temperate comparison. Evolution 35:9951007.
BeuA. G. 2009. Before the ice: biogeography of Antarctic Paleogene molluscan faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 284:191226.
BrandhorstS., ChoiI. Y., WeiM., ChengC. W., SedrakyanS., NavarreteG., DubeauL., YapL. P., ParkR., VinciguerraM., Di BiaseS., MirzaeiH., MirisolaM. G., ChildressP., JiL., GroshenS., PennaF., OdettiP., PerinL., ContiP. S., IkenoY., KennedyB. K., CohenP., MorganT. E., DorffT. B., and LongoV. D.. 2015. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metabolism 22:8699.
BreyT., and ClarkeA.. 1993. Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarctic Science 5:253266.
BreyT., and HainS.. 1992. Growth, reproduction and production of Lissarca notorcadensis (Bivalvia: Philobryidae) in the Weddell Sea, Antarctica. Marine Ecology Progress Series 82:219226.
BreyT., and MackensenA.. 1997. Stable isotopes prove shell growth bands in the Antarctic bivalve Laternual elliptica to be formed annually. Polar Biology 17:465468.
BreyT., PeckL. S., GuttJ., HainS., and ArntzW. E.. 1995. Population dynamics of Magellania fragilis, a brachiopod dominating a mixed-bottom macrobenthic assemblage on the Antarctic shelf. Journal of the Marine Biological Association of the United Kingdom 75:857869.
BreyT., VoigtM., JenkinsK., and AhnI.. 2011. The bivalve Laternula elliptica at King George Island—a biological recorder of climate forcing in the West Antarctic Peninsula region. Journal of Marine Systems 88:542552.
BrockingtonS. 2001. The seasonal energetics of the Antarctic bivalve Laternaula elliptica (King and Broderip) at Rother Point, Adelaide Island. Polar Biology 24:523530.
BrockingtonS., and ClarkeA.. 2001. The relative influence of temperature and food on the metabolism of a marine invertebrate. Journal of Experimental Marine Biology and Ecology 258:8799.
BrodteE., KnustR., PörtnerH. O., and ArntzW. E.. 2006. Biology of the Antarctic eelpout Pachycara brachycephalum . Deep-Sea Research, part II (Topical Studies in Oceanography) 53:11311140.
BuickD. P., and IvanyL. C.. 2004. 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica. Geology 32:921924.
BurchettM. S., DevriesA., and BriggsA. J.. 1984. Age determination and growth of Dissostichus mawsoni (Norman, 1937) (Pisces, Nototheniidae) from McMurdo Sound (Antarctica). Cybium 8:2731.
ButlerP. G., WanamakerA. D., ScourseJ. D., RichardsonC. A., and ReynoldsD. J.. 2013. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica . Palaeogeography, Palaeoclimatology, Palaeoecology 373:141151.
CamusL., GulliksenB., DepledgeM. H., and JonesM. B.. 2005. Polar bivalves are characterized by high antioxidant defences. Polar Research 24:111118.
ClarkG. 1974. Growth lines in invertebrate skeletons. Annual Review of Earth and Planetary Science 2:7799.
ClarkeA., Prothero-ThomasE., BeaumontJ., ChapmanA., and BreyT.. 2004. Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biology 28:6271.
ColmanR. J., BeasleyT. M., KemnitzJ. W., JohnsonS. C., WeindruchR., and AndersonR. M.. 2014. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications 5:3557.
DexterT. A., and KowalewskiM.. 2013. Jackknife-corrected parametric bootstrap estimates of growth rates in bivalve mollusks using nearest living relatives. Theoretical Population Biology 90:3648.
DouglasP. M., AffekH. P., IvanyL. C., HoubenA. J., SijpW. P., SluijsA., SchoutenS., and PaganiM.. 2014. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proceedings of theNational Academy of Science USA 111:6582–6587.
DudleyE., and VermeijG.. 1980. Predation in time and space: drilling in the gastropod Turritella . Paleobiology 4:436441.
DuttonA., HuberB. T., LohmannK. C., and ZinsmeisterW. J.. 2007. High-resolution stable isotope profiles of a dimitobelid belemnite: implications for paleodepth habitat and late Maastrichtian climate seasonality. Palaios 22:642650.
DuttonA. L., LohmannK. C., and ZinsmeisterW. J.. 2002. Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica. Paleoceanography 17(2), 113.
FanestilD., and BarrowsC.. 1965. Aging in the rotifer. Journal of Gerontology 20:462469.
FeldmannR. M., and WoodburneM. O., eds. 1988. Geology and paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169.
FrancisJ. E., and PooleI.. 2002. Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeography, Palaeoclimatology, Palaeoecology 182:4764.
FreestoneA. L., OsmanR. W., RuizG. M., and TorchinM. E.. 2011. Stronger predation in the tropics shapes species richness patterns in marine communitites. Ecology 92:983993.
GilloolyJ. F., BrownJ. H., WestG. B., SavageV. M., and CharnovE. L.. 2001. Effects of size and temperature on metabolic rate. Science 293:22482251.
GoodwinD. H., FlessaK. W., SchöneB. R., and DettmanD. L.. 2001. Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios 16:387398.
HallmannN., SchöneB. R., StromA., and FiebigJ.. 2008. An intractable climate archive—sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 269:115126.
HarperE. M., and PeckL.. 2003. Predatory behaviour and metabolic costs in the Antarctic muricid gastropod Trophon longstaffi . Polar Biology 26:208217.
HarperE. M., and PeckL.. 2016. Latitudinal and depth gradients in marine predation pressure. Global Ecology and Biogeography 25:670678.
HayW. W., and FloegelS.. 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews 115:262272.
HillebrandH. 2004. On the generality of the latititudinal diversity gradient. American Society of Naturalists 163:192211.
HuberM., and SloanL. C.. 2001. Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophysical Research Letters 28:34813484.
IvanyL. C. 2012. Reconstructing paleoseasonality from accretionary skeletal carbonates—challenges and opportunities. In Linda C. Ivany and Brian T. Huber, eds. Reconstructing Earth’s deep-time climate—the state of the art in 2012, Paleontological Society Short Course, November 3, 2012. Paleontological Society Papers 18:133–165.
IvanyL. C., and RunnegarB.. 2010. Early Permian seasonality from bivalve 18O and implications for the oxygen isotopic composition of seawater. Geology 38:10271030.
IvanyL. C., LohmannK. C., HasiukF., BlakeD., GlassA., AronsonR., and MoodyR.. 2008. Eocene climate record of a high souther latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin 120:659678.
JonesD. S. 1980. Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology 6:331340.
JonesD. S 1983. Sclerochronology: reading the record of the molluscan shell: annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity. American Scientist 71:384391.
JonesD. S., and GouldS. J.. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.
JonesD. S., and QuitmyerI. R.. 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340346.
JonesD. S., ThompsonI., and AmbroseW. G. J.. 1978. Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on interal growth lines in shell cross-sections. Marine Biology 47:6370.
JonesD. S., WilliamsD. F., and ArthurM. A.. 1983. Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and shell increments. Journal Experimental Marine Biology and Ecology 73:225242.
JonesD. S., ArthurM. A., and AllardD. J.. 1989. Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Marine Biology 102:225234.
KelleyP., and HansenT.. 2007. Latitudinal patterns in naticid gastropod predation along the east coast of the United States: a modern baseline for interpreting temporal patterns in the fossil record. In R. G. Bromley, L. A. Buatois, G. Mángano, J. F. Genise, and R. N. Melchor, eds. Sediment–organism interactions: a multifaceted ichnology. SEPM Special Publication 88:287–289.
KempD. B., RobinsonS. A., CrameJ. A., FrancisJ. E., InesonJ., WhittleR. J., BowmanV., and O’BrienC.. 2014. A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene. Geology 42:583586.
KlassM. 1977. Aging in the nematode Caenorhabditis elegans: major biological and enivronmental factors influencing life span. Mechanisms of Ageing and Development 6:413429.
KrantzD. E., JonesD. S., and WilliamsD. F.. 1984. Growth rates of the sea scallop, Placopecten magellanicus, determine from the 18O/16O record in shell calcite. Biological Bulletin 167:186199.
LakowskiB., and HekimiS.. 1996. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:10101013.
LawverL. A., GahaganL. M., and CoffinM. F.. 1992. The development of paleoseaways around Antarctica, Pp. 730. in J. P. Kennett, and Detlef A. Warkne, eds. The Antarctic paleoenvironment: a perspective on global change. Wiley, Hoboken, N.J.
LewisD. E., and CerratoR. M.. 1997. Growth uncoupling and the relationship between shell growth and metabolism in the soft shell clam Mya arenaria . Marine Ecology Progress Series 158:177189.
LocarniniR. A., MishonovA. V., AntonovJ. I., BoyerT. P., GarciaH. E., BaranovaO. K., ZwengM. M., PaverC. R., ReaganJ. R., JohnsonD. R., HamiltonM., and SeidovaD.. 2013. World ocean atlas. https://www.nodc.noaa.gov/OC5/woa13/woa13data.html.
LomovaskyB. J., BreyT., MorriconiE., and CalvoJ.. 2002. Growth and reproduction of the venerid bivalve Eurhomalea exalbida in the Beagle Channel, Tierra del Fuego. Journal of Sea Research 48:209216.
LutzR. A., and RhoadsM. C.. 1980. Growth patterns within the molluscan shell: an overview. Pp. 203254. in M. C. Rhoads, and R. A. Lutz, eds. Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York.
MacDonaldB., and ThomasM.. 1980. Age determination of the soft-shell clam Mya arenaria using shell internal growth lines. Marine Biology 58:105109.
MacellariC. 1984. Late Cretaceous stratigraphy, sedimentology, and macropaleontology of Seymour Island, Antarctic Peninsula. Ohio State University, Columbus.
MacellariC 1988. Stratigrpahy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. Geological Society of America Memoir 169:2533.
MarshallC. R. 1995. Distinguishing between sudden and gradual extinctions in the fossil record: predicting the position of the Cretaceous–Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology 23:731734.
MasoroE. J. 2000. Caloric restriction and aging: an update. Experimental Gerontology 35:299305.
McKayC. M., CrowellM. F., and MaynardL. A.. 1935. The effect of retarded growth upon the length of life span and upon the ultimate body size. Journal of Nutrition 10:6379.
MetteM. J., WanamakerA. D., CarrollM. L., AmbroseW. G., and RetelleM. J.. 2016. Linking large-scale climate variability with Arctica islandica shell growth and geochemistry in northern Norway. Limnology and Oceanography 61:748764.
MossD. K., IvanyL. C., JuddE. J., CummingsP. C., BeardenC. E., KimJ., ArtrucE. G., and DriscollJ. R.. 2016. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proceedings of the Royal Society of London B 283:10.1098/rspb.2016.1364.
NevilleW. 1945. The quahog fishery of Rhode Island. Department of Agriculture and Conservation of the State of Rhode Island, Providence, R.I.
NortonI. O., and SclaterJ. G.. 1979. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. Journal of Geophysical Research (Solid Earth) 84:68036830.
PannellaG. 1976. Tidal growth patterns in recent and fossil mollusc bivalve shells: a tool for the reconstruction of paleotides. Naturwissenschaften 63:539543.
PannellaG., and MacClintockC.. 1968. Biological and environmental rhythms reflected in molluscan shell growth. Paleontological Society Memoir 2:6480.
PeckL. S., and ConwayL. Z.. 2000. The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In E. M. Harper, ed. The evolutionary biology of the bivalvia. Geological Society of London Special Publication 177:441–450.
PeckL. S., BrockingtonS., and BreyT.. 1997. Growth and metabolism in the Antarctic brachiopod Liothyrella unva . Philosophical Transactions of the Royal Society of London B 352:851858.
PeckL. S., ConveyP., and BarnesD. K.. 2006. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews of the Cambridge Philosophical Society 81:75109.
PetersonC. H., DuncanP. B., SummersonH. C., and SafritG. W.. 1983. A mark-recapture test of annual periodicity of internal growth band deposition in shells of hard clams, Mercenaria mercenaria, from a population along the southeastern United States. Fishery Bulletin 81:765799.
PhilippE., BreyT., HeilmayerO., AbeleD., and PortnerH.. 2006. Physiological ageing in a temperate and a polar swimming scallop. Marine Ecology Progress Series 307:187198.
PickenG. B. 1980. The distribution, growth, and reproduction of the Antarctic Limpet Nacella (Patinigera) concinna (Strebel, 1908). Journal of Experimental Marine Biology and Ecology 42:7185.
PorebskiS. 1995. Facies architecture in a tectonically-controlled incised-valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Studia Geologica Polonica 107:797.
PorebskiS 2000. Shelf-valley compound fill produced by fault subsidence and eustatic sea-level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology 28:147150.
RhoadsD. C., and LutzR. A.. 1980). Skeletal growth of aquatic organisms: biological records of environmental change. Topics in Geobiology, Vol. 1. Plenum, New York.
RhoadsD. C., and PannnellaG.. 1970. The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia 3:143161.
RichardsonC. A., CrispD. J., RunhamN. W., and GruffyddL. D.. 1980. The use of tidal growth bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-Arctic conditions. Journal of the Marine Biological Association of the United Kingdom 60:977989.
RidgwayI., BowdenT. J., Roman-GonzalezA., and RichardsonC. A.. 2014. Resistance to oxidative stress is not associated with the exceptional longevity of the freshwater pearl mussel, Margaritifera margaritifera nor three unionid species. Aquatic Sciences 76:259267.
RidgwayI. D., RichardsonC. A., and AustadS. N.. 2011. Maximum shell size, growth rate, and maturation age correlate with longevity in bivalve molluscs. Journals of Gerontology A (Biological Sciences and Medical Sciences ) 66:183190.
RoyK., JablonskiD., and MartienK.. 2000). Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:13150–13155.
RubnerM. 1908. Das problem der Lebensdauer und seine Beziehungen sum Wachstum und Ernahrung. Oldenbourg, Munich.
SadlerP. M. 1988. Geometry and stratification of uppermost Cretacous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In R. M. Feldmann and M. O. Woodburne, eds. Geology and paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir 169:303–320.
SatoS. 1994. Analysis of the relationship between growth and sexual maturation in Phacosoma japonicum (Bivalvia: Veneridae). Marine Biology 118:663672.
SatoS Spawing periodicity and shell microgrowth patterns of the venerid bivalve Phacosoma japonicum (Reeve, 1850). Veliger 38:61–72.
SatoS 1999. Temporal change of life-history traits in fossil bivalves: an example of Phacosoma japonicum from the Pleistocene of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 154:313323.
Sato-OkoshiW., and OkoshiK.. 2007. Characteristics of shell microstructure and growth analysis of the Antarctic bivalve Laternula elliptica from Lützow-Holm Bay, Antarctica. Polar Biology 31:131138.
SchemskeD. W., MittelbachG. G., CornellH. V., SobelJ. M., and RoyK.. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40:245269.
SchöneB. R., and GillikinD. P.. 2013. Unraveling environmental histories from skeletal diaries—advances in sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 373:15.
SchöneB. R., DuncaE., FiebigJ., and PfeifferM.. 2005a. Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 228:149166.
SchöneB. R., HoukS. D., Freyre CastroA. D., FiebigJ., OschmannW., KronckeI., DreyerW., and GosselckF.. 2005b. Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. Palaios 20:7892.
SchöneB. R., ZhangZ., RadermacherP., ThébaultJ., JacobD. E., NunnE. V., and MaurerA.-F.. 2011. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 302:5264.
SejrM. K., JensenK. T., and RysgaardS.. 2002aAnnual growth bands in the bivalve Hiatella arctica validated by a mark-recapture study in NE Greenland. Polar Biology 25:794796.
SejrM. K., SandM. K., JensenK. T., PetersonJ. K., ChristensenP. B., and RysgaardS.. 2002b. Growth and production of Hiatella arctica (Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland). Marine Ecology Progress Series 244:163169.
SmithW., MarraJ., HiscockM., and BarberR.. 2000. The seasonal cycle of phytoplankton bimoass and primary producitivty in the Ross Sea, Antarctica. Deep-Sea Research, part II (Topical Studies in Oceanography) 47:31193140.
SpeakmanJ R.. 2005. Body size, energy metabolism and lifespan. Journal of Experimental Biology 208:17171730.
StilwellJ. D., and ZinsmeisterW. J. eds 1992. Molluscan systematics and biostratigraphy: Lower Tertiary La Meseta Formation, Seymour Island, Antarctic Peninsula. Wiley, Hoboken, N.J.
ThomasJ. A., WelchJ. J., LanfearR., and BromhamL.. 2010. A generation time effect on the rate of molecular evolution in invertebrates. Molecular Biology and Evolution 27:11731180.
ThompsonI., JonesD. S., and DreibelbisD.. 1980. Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Marine Biology 57:2534.
TobinT. S., and WardP. D.. 2015. Carbon isotope (δ13C) differences between Late Cretaceous ammonites and benthic mollusks from Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 428:5057.
TobinT. S., WardP. D., SteigE. J., OliveroE. B., HilburnI. A., MitchellR. N., DiamondM. R., RaubT. D., and KirschvinkJ. L.. 2012. Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology 350–352:180188.
TorsvikT. H., MüllerR. D., Van der VooR., SteinbergerB., and GainaC.. 2008. Global plate motion frames: toward a unified model. Reviews of Geophysics 46(3).
Van VoorhiesW. 2001. Metabolism and lifespan. Experimental Gerontology 36:5564.
Verdone-SmithC., and EnescoH. E.. 1982. The effect of temperature and of dietary restriction on lifespan and reproduction in the rotifer Asplanchia brightwelli . Experimental Gerontology 17:252262.
VermeijG., DudleyE., and ZipserE.. 1989. Successful and unsuccessful drilling predation in recent pelecypods. Veliger 32:266273.
VisaggiC. C., and KelleyP. H.. 2015. Equatorward increase in naticid gastropod drilling predation on infaunal bivalves from Brazil with paleontological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 438:285299.
VladimirovaI., KleimenovaS., and RadzinskayaL.. 2003. The relation of energy metabolism and body weight in bivalves (Mollusca:Bivalvia). Biology Bulletin 30:392399.
von BertalanffyL. 1938. A quanitative theory of organic growth (inquiries on growth laws II). Human Biology 10:181213.
WanamakerA. D., HeinemeierJ., ScourseJ., RichardsonC., ButlerP. G., EirikssonJ., and KnudsenK. L.. 2008. Very long-lived mollusks confirm 17th century AD tephra based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50:399412.
WilliamsD. F., ArthurM. A., JonesD. S., and WilliamsN. H.. 1982. Seasonality and mean annual sea surface temperatures from isotopic and sclerochronological records. Nature 296:432434.
WitbaardR., JennessM. I., van der BorgK., and GanssenG.. 1994. Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research 33:91101.
WittsJ. D., BowmanV. C., WignallP. B., Alistair CrameJ., FrancisJ. E., and NewtonR. J.. 2015. Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the López de Bertodano Formation, Seymour Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 418:193212.
WittsJ. D., WhittleR. J., WignallP. B., CrameJ. A., FrancisJ. E., NewtonR. J., and BowmanV. C.. 2016. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica. Nature Communications 7:11738.
WoodheadA. D. 1985. Feral fishes. Interdisciplinary Topics in Gerontology 21:2250.
ZachosJ., PaganiM., SloanL., ThomasE., and BillupsK.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686692.
ZachosJ. C., DickensG. R., and ZeebeR. E.. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.
ZinsmeisterW. J. 1982. Review of the Upper Cretaceous–Lower Tertiary sequence on Seymour Island, Antarctica. Journal of the Geological Society 139:779785.
ZinsmeisterW. J 1984. Late Eocene Bivalves (Mollusca) from the La Meseta Formation, collected during the 1974–1975 Joint Argentine–American Expedition to Seymour Island, Antarctic Peninsula. Journal of Paleontology 58:14971527.
ZinsmeisterW. J., and MacellariC. E.. 1988. Bivalvia (Mollusca) from Seymour Island, Antarctic Peninsula. In R. M. Feldmann, and M. O. Woodburne, eds. Geology and paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir:169253169284.
ZinsmeisterW. J., FeldmannR. M., WoodburneM. O., and ElliotD. H.. 1989. Latest Cretaceous/Earliest Tertiary transition on Seymour Island, Antarctica. Journal of Paleontology 63:731738.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 517 *
Loading metrics...

* Views captured on Cambridge Core between 17th April 2017 - 24th October 2017. This data will be updated every 24 hours.