Skip to main content
    • Aa
    • Aa

Inferring skeletal production from time-averaged assemblages: skeletal loss pulls the timing of production pulses towards the modern period

  • Adam Tomašových (a1), Susan M. Kidwell (a2) and Rina Foygel Barber (a3)

Age-frequency distributions of dead skeletal material on the landscape or seabed—information on the time that has elapsed since the death of individuals—provide decadal- to millennial-scale perspectives both on the history of production and on the processes that lead to skeletal disintegration and burial. So far, however, models quantifying the dynamics of skeletal loss have assumed that skeletal production is constant during time-averaged accumulation. Here, to improve inferences in conservation paleobiology and historical ecology, we evaluate the joint effects of temporally variable production and skeletal loss on postmortem age-frequency distributions (AFDs) to determine how to detect fluctuations in production over the recent past from AFDs. We show that, relative to the true timing of past production pulses, the modes of AFDs will be shifted to younger age cohorts, causing the true age of past pulses to be underestimated. This shift in the apparent timing of a past pulse in production will be stronger where loss rates are high and/or the rate of decline in production is slow; also, a single pulse coupled with a declining loss rate can, under some circumstances, generate a bimodal distribution. We apply these models to death assemblages of the bivalve Nuculana taphria from the Southern California continental shelf, finding that: (1) an onshore-offshore gradient in time averaging is dominated by a gradient in the timing of production, reflecting the tracking of shallow-water habitats under a sea-level rise, rather than by a gradient in disintegration and sequestration rates, which remain constant with water depth; and (2) loss-corrected model-based estimates of the timing of past production are in good agreement with likely past changes in local production based on an independent sea-level curve.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. R. Alexander , and H. J. Lee . 2009. Sediment accumulation on the Southern California Bight continental margin during the twentieth century. Geological Society of America Special Paper 454, 6987.

R. C Aller . 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology 90:7995.

A. Berkeley , C. T. Perry , S. G. Smithers , and S. Hoon . 2014. Towards a formal description of foraminiferal assemblage formation in near shore environments: qualitative and quantitative concepts. Marine Micropalaeontology 112:2738.

T. C. Brachert , and W.-C. Dullo . 2000. Shallow burial diagenesis of skeletal carbonates: Selective loss of aragonite shell material (Miocene to Recent, Queensland Plateau and Queensland Trough, NE Australia) - implications for shallow cool-water carbonates. Sedimentary Geology 136:169187.

A. M. Bush , and R. K. Bambach . 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases in the study of paleocommunities. Journal of Geology 112:625642.

N. G Cameron . 1995. The representation of diatom communities by fossil assemblages in a small acid lake. Journal of Paleolimnology 14:185223.

F. Colchero , and J. S. Clark . 2012. Bayesian inference on age-specific survival for censored and truncated data. Journal of Animal Ecology 81:139149.

S. M.-H. Conan , E. M. Ivanova , and G.-J. A. Brummer . 2002. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Marine Geology 182:325349.

H. Cummins , E. N. Powell , R. J. Stanton Jr., and G. Staff . 1986. The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved? Palaeogeography Palaeoclimatology Palaeoecology 52:291320.

J. L. Dawson , S. G. Smithers , and Q. Hua . 2014. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef. Geomorphology 222:6881.

D. J. Davies , E. N. Powell , and R. J. Stanton Jr. 1989. Relative rates of shell dissolution and net sediment accumulation—a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22:207212.

N. Dittert , and R. Henrich . 2000. Carbonate dissolution in the South Atlantic Ocean: Evidence from ultrastructure breakdown in Globigerina bulloides. Deep-Sea Research 47:603620.

T. H. G. Ezard , P. N. Pearson , T. Aze , and A. Purvis . 2012. The meaning of birth and death (in macroevolutionary birth–death models). Biology Letters. doi: 10.1098/rsbl.2011.0699.

K. W Flessa . 1998. Well-traveled cockles: shell transport during the Holocene transgression of the southern North Sea. Geology 26:187190.

M. R. Ford , and P. S. Kench . 2012. The durability of bioclastic sediments and implications for coral reef deposit formation. Sedimentology 59:830842.

C. E. Glover , and S. M. Kidwell . 1993. Influence of organic matrix on the post-mortem destruction of molluscan shells. Journal of Geology 101:729747.

V. C. Hover , L.M. Walter , and D. R. Peacor . 2001. Early marine diagenesis of biogenic aragonite and Mg-calcite: New constraints from high-resolution STEM and AEM analyses of modern platform carbonates. Chemical Geology 175:221248.

X. Hu , and D. J. Burdige . 2007. Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: evidence for coupled carbonate dissolution and reprecipitation. Geochimica et Cosmochimica Acta 71:129144.

G Hunt . 2004. Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426443.

E Jarochowska . 2012. High-resolution microtaphofacies analysis of a carbonate tidal channel and tidally influenced lagoon, Pigeon Creek, San Salvador Island, Bahamas. Palaios 27:151170.

D. S. Kaufman , and W. F. Manley . 1998. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17:9871000.

V.A. Kavvadias , D. Alifragis , A. Tsiontsis , G. Brofas , and G. Stamatelos . 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management 144:113127.

D. B. Kemp , and P. M. Sadler . 2014. Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates. Sedimentology 61:12861297.

S. M. Kidwell 1989. Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the Miocene of Maryland. Journal of Geology 97:124.

S. M. Kidwell 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.

S. M Kidwell . 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487522.

S. M. Kidwell , and D. W. J. Bosence . 1991. Taphonomy and time averaging of marine shelly faunas. In P.A. Allison, and D.E.G. Briggs, eds. Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, 115209.

S. M. Kidwell , M. M. R. Best , and D. S Kaufmann . 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729732.

S. M. Kidwell , and A. Tomasovych . 2013. Implications of time-averaged death assemblages for ecology and conservation biology. Annual Reviews of Ecology. Evolution, and Systematics 44:539563.

M. A. Kosnik , and D. S. Kaufman . 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening. Quaternary Geochronology 3:328341.

M.A. Kosnik , Q. Hua , D.S. Kaufman , and R.A. Wüst . 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half lives in Great Barrier Reef sediment. Paleobiology 35:565586.

M. A. Kosnik , D. S. Kaufman , and Q. Hua . 2013. Radiocarbon-calibrated multiple amino acid geochronology of Holocene molluscs from Bramble and Rib reefs (Great Barrier Reef). Quaternary Geochronology 16:7386.

M. A. Kosnik , Q. Hua , D. S. Kaufman , and A. Zawadzki . 2014. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies. Coral reefs 34:215229.

E. Kotler , R. E. Martin , and W. D. Liddell . 1992. Experimental analysis of abrasion and dissolution resistance of modern reef-dwelling Foraminifera: implications for the preservation of biogenic carbonate. Palaios 7:244276.

M. Kowalewski , G. E. Avila Serrano , K. W. Flessa , and G. A. Goodfriend . 2000. Dead delta’s former productivity: Two trillion shells at the mouth of the Colorado River. Geology 28:10591062.

R. A. Krause Jr., S. L. Barbour , M. Kowalewski , D. S. Kaufman , C. S. Romanek , M. G. Simoes , and J. F. Wehmiller . 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428452.

A. Z. Krug , D. Jablonski , and J. W. Valentine . 2009. Signature of the end-Cretaceous mass extinction in the modern biota. Science 323:767771.

E. Leorri , and R. E. Martin . 2009. The input of foraminiferal infaunal populations to sub-fossil assemblages along an elevational gradient in a salt marsh: application to sea-level studies in the mid-Atlantic coast of North America. Hydrobiologia 625:6981.

J. W. Morse , and W. H. Casey . 1988. Ostwald processes and mineral paragenesis in sediments. American Journal of Science 288:537560.

A. Tomašových , and S. M. Kidwell . 2011. Accounting for the effects of biological variability and temporal autocorrelation in assessing the preservation of species abundance. Paleobiology 37:332354.

T. R. Nardin , R. H. Osborne , D. J. Bottjer , and R. C. Scheidemann . 1981. Holocene sea-level curves for Santa Monica shelf, California Continental Borderland. Science 213:331333.

T. D Olszewski . 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.

T. D Olszewski 2012. Remembrance of things past: modeling the relationship between species’ abundances in living communities and death assemblages. Biology Letters 8:131134.

T. D. Olszewski , and D. S Kaufman . 2015. Tracing burial history and sediment recycling in a shallow estuarine setting (Copano Bay, Texas) using postmortem ages of the bivalve Mulinia lateralis. Palaios 30:224237.

J. M. Pandolfi , S. R. Connolly , D. J. Marshall , and A. L. Cohen . 2011. Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science 333:418422.

C. T Perry . 1999. Biofilm-related calcification, sediment trapping and constructive micrite envelopes: A criterion for the recognition of ancient grass-bed environments? Sedimentology 46:3345.

C. T. Perry , G. N. Murphy , P. S. Kench , E. N. Edinger , S. G. Smithers , R. S. Steneck , and P. J. Mumby . 2014. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proceedings of the Royal Society B 281:20142018.

E. N. Powell , J. N. Kraeuter , and K. A. Ashton-Alcox . 2006. How long does oyster shell last on an oyster reef? Estuarine, Coastal and Shelf Science 69:531542.

E. N. Powell , W. R. Callender , G. M. Staff , K. M. Parsons-Hubbard , C. E. Brett , S. E. Walker , A. Raymond , and K. A. Ashton-Alcox . 2008. Molluscan shell condition after eight years on the sea floor – taphonomy in the Gulf of Mexico and Bahamas. Journal of Shellfish Research 27:191225.

E. N. Powell , G. M. Staff , W. R. Callender , K. A. Ashton-Alcox , C. E. Brett , K. M. Parsons-Hubbard , S. E. Walker , and A Raymond . 2011. Taphonomic degradation of molluscan remains during thirteen years on the continental shelf and slope of the northwestern Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 312:209232.

R. P. Reid , and I. G. Macintyre . 1998. Carbonate recrystallization in shallow marine environments: A widespread diagenetic process forming micritized grains. Journal of Sedimentary Research 68:928946.

J. M. Rivers , N. P. James , and T.K Kyser . 2008. Early diagenesis of carbonates on a cool-water carbonate shelf, southern Australia. Journal of Sedimentary Research 78:784802.

D. Scarponi , D. S. Kaufman , A. Amorosi , and M. Kowalewski . 2013. Sequence stratigraphy and the resolution of the fossil record. Geology 41:239242.

A Seilacher . 1985. The Jeram model: event condensation in a modern intertidal environment. In U. Bayer, and A. Seilacher, eds. Sedimentary and evolutionary cycles. Lecture Notes in Earth Sciences1:335341.

A. Simon , M. Poulicek , B. Velimirov , and F. T. MacKenzie . 1994. Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167195.

S. D. A Smith . 2008. Interpreting molluscan death assemblages on rocky shores: Are they representative of the regional fauna? Journal Experimental Marine Biology Ecology 366:151159.

R. C Terry . 2010. The dead don’t lie: using skeletal remains for rapid assessment of historical small-mammal community baselines. Proceedings of the Royal Society B 277:11931201.

R. C. Terry , C. L. Li , and E. A. Hadly . 2011. Predicting small-mammal responses to climatic warming: autecology, the geographic range, and Holocene warming. Global Change Biology 17:30193034.

R. C. Terry , and M. Novak . 2015. Where does the time go?: Mixing and the depth-dependent distribution of fossil ages. Geology (in press).

A. Tomašových , and S. M. Kidwell . 2010. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36:672695.

A. Tomašových , S. M. Kidwell , R. Foygel Barber , and D. S. Kaufman . 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.

G. G. Waldbusser , and J. E. Salisbury . 2014. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6:221247.

G. G. Waldbusser , R. A. Steenson , and M. A. Green . 2011. Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy. Journal of Shellfish Research 30:659669.

G. G. Waldbusser , E. N. Powell , and R. Mann . 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94:895903.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.