Skip to main content

Intraspecific bimodal variability in eye lenses of two Devonian trilobites

  • Catherine Crônier (a1), Petr Budil (a2), Oldřich Fatka (a3) and Lukáš Laibl (a4)

Arthropods are known to display a variable number of eye lenses and this number mostly increases during their development. In trilobites, most species possessing schizochroal eyes exhibit a notable intraspecific variation in the number of dorso ventral files of eye lenses that can be age related (i.e., growth) or not (i.e., living environment). Several previous studies have shown that some trilobite groups (e.g. phacopids) tend to have fewer lenses/files in representatives from the deeper habitats than those from shallower habitats. In this study, we analyzed the pattern of variation in the number of dorso ventral files of eye lenses in two Devonian phacopid trilobites from the Prague Basin of the Czech Republic. We quantified their intraspecific variability. To better understand the patterning, we compared more than 120 individuals. Data first reveal evidence of a bimodal distribution of lens/file number without intermediate forms among each of two studied populations of Prokops prokopi (Chlupáč, 1971) and throughout the ontogeny of Pedinopariops insequens (Chlupáč, 1977). Our results indicate that caution must be taken for taxonomical affiliation and biodiversity analyses of taxa in which the intraspecific variability is unclear. Additionally, we investigated possible relations of these bimodalities to the stratigraphical position of studied populations and to the paleoenvironment. In Prokops prokopi, a slightly different age of both populations, together with supposed differences in the local environments can be responsible for observed variability. In Pedinopariops insequens, stress conditions possibly related to the approaching onset of the Basal Choteč Event can be responsible for surprising intrapopulation variability. We speculate that the stress conditions could cause a bimodal selection and possibly also the change of ontogenetic trajectory within this species. Pedinopariops insequens was the only phacopid in the Prague Basin that crosses the Lower/Middle Devonian boundary and survived also the onset of Basal Choteč Event.

Hide All
Aberhan M., Nürnberg S., and Kiessling W.. 2012. Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology 38:187204.
Abrams P. A., Rueffler C., and Kim G.. 2008. Determinants of the strength of disruptive and/or divergent selection arising from resource competition. Evolution 62:15711586.
Adams D. C., Rohlf F. J., and Slice D. E.. 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71:516.
Barrande J. 1846. Notice préliminaire sur le Systême silurien et les trilobites de Bohême. Hirschfeld, Leipzig.
Barrande J 1852. Système silurien du centre de la Bohême. Ière partie: Recherches Paléontologiques. I. Crustacés: Trilobites. Prague, Paris.
Berkyová S. 2009. Lower-Middle Devonian (upper Emsian-Eifelian, serotinus-kockelianus zones) conodont faunas from the Prague Basin, the Czech Republic. Bulletin of Geosciences 84:667686.
Bignon A., and Crônier C.. 2014. Trilobite faunal dynamics on the Devonian continental shelves of the Ardenne Massif and Boulonnais (France, Belgium). Acta Palaeontologica Polonica. (doi: org/10.4202/app.00019.2013.
Bookstein F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.
Bouček B. 1931. O některých nových bohatých nalezištích zkamenělin ve starším paleozoiku středních Čech. Věda přírodní 12:136144.
Brayard A., Bucher H., Escarguel G., Fluteau F., Bourquin S., and Galfetti T.. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 239:374395.
Budil P. 1999. Some comments on the genus Ormathops Delo from the Bohemian Ordovician. Acta Universitatis Carolinae, Geologica 43:373376.
Budil P., Hörbinger F., and Mencl R.. 2009. Lower Devonian dalmanitid trilobites of the Prague Basin (Czech Republic). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Earth Sciences 99:61100.
Carls P., Slavík L., and Valenzuela-Ríos J. I.. 2008. Comments on the GSSP for the basal Emsian stage boundary: the need for its redefinition. Bulletin of Geosciences 83:383390.
Cavalazzi B. 2006. Kess Kess carbonate mounds, Hamar Laghdad, Tafilalt, Anti-Atlas, SE Morocco – A Field Guide, Morocco. UNESCO Field Action, 01–05 December 2006, p. 20.
Chlupáč I. 1957. Faciální vývoj a biostratigrafie středočeského spodního devonu (Facial development and biostratigraphy of the Lower Devonian of Central Bohemia). Sborník Ústředního ústavu geologického, oddíl geologický 23:369448.
Chlupáč I 1959. Faciální vývoj a biostratigrafie břidlic dalejských a vápenců hlubočepských (eifel) ve středočeském devonu (Facial development and biostratigraphy of the Daleje Shale and the Hlubočepy Limestone (Eifelian) in the Devonian of Central Bohemia). Sborník Ústředního ústavu geologického, oddělení geologické 25:446511.
Chlupáč I 1971. New phacopid trilobites from the Devonian of Czechoslovakia. Časopis pro mineralogii a geologii 16:255261.
Chlupáč I 1977. The phacopid trilobites of the Silurian and Devonian of Czechoslovakia. Rozpravy Ústředního ústavu geologického 43:1172.
Chlupáč I 1982. Preliminary submission for Lower-Middle Devonian boundary stratotype in the Barrandian area. Courier Forschungsinstitut Senckenberg 55:8596.
Chlupáč I 1983. Trilobite assemblages in the Devonian of the Barrandian area and their relations to palaeoenvironments. Geologica et Palaeontologica 17:4573.
Chlupáč I 1985. Comments of the Lower-Middle Devonian boundary. Courier Forschungsinstitut Senckenberg 75:389400.
Chlupáč I 1988. Geologické zajímavosti pražského okolí. Academia, Praha (in Czech).
Chlupáč I 1993. Geology of the Barrandian. A field trip guide. Senckenberg-Buch 69. Verlag Waldemar Kramer, Frankfurt am Main.
Chlupáč I 1994. Devonian trilobites – Evolution and events. Geobios 27:487505.
Chlupáč I 1999. Vycházky za geologickou minulostí pražského okolí, (second edition). Academia, Praha in Czech.
Chlupáč I., Feist R., and Morzadec P.. 2000. Trilobites and standard Devonian stage boundaries. Courier Forschungsinstitut Senckenberg 220:8798.
Chlupáč I., Lukeš P., and Zikmundová J.. 1979. The Lower-Middle Devonian boundary beds in the Barrandian area, Czechoslovakia. Geologica et Palaeontologica 13:125156.
Chlupáč I., Havlíček V., Kříž J., Kukal Z., and Štorch P.. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague.
Chlupáč I., and Kukal Z.. 1988. Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian-Middle Devonian, Czechoslovakia). Sborník geologických věd, Geologie 43:83146.
Chow G. C. 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28:591605.
Clarkson E. N. K. 1966a. Schizochroal eyes and vision in some Silurian acastid trilobites. Palaeontology 9:129.
Clarkson E. N. K 1966b. Schizochroal eyes and vision in some phacopid trilobites. Palaeontology 9:464487.
Clarkson E. N. K 1971. On the early schizochroal eyes of Ormathops (Trilobita: Zeliszkellinae). Mémoires du Bureau des Recherches Géologiques et Minières 73:5163.
Clarkson E. N. K 1979. The visual system of trilobites. Palaeontology 22:122.
Clarkson E. N. K., and Tripp R. P.. 1982. The Ordovician trilobites Calyptaulax brongniartii (Portlock). Transactions of the Royal Society of Edinburgh, Earth Sciences 72:287294.
Clarkson E. N. K, Levi-Setti R., and Horvath G.. 2006. The eyes of trilobites: the oldest preserved visual system. Arthropod Structure Development 35:247259.
Crônier C., and Clarkson E. N. K.. 2001. Variation of eye-lens distribution in a new Late Devonian phacopid trilobite. Transactions of the Royal Society of Edinburgh 92:103113.
Crônier C., and Fortey R. A.. 2006. Morphology and ontogeny of an Early Devonian Phacopid trilobite with reduced sight from southern Thailand. Journal of Paleontology 80:529536.
Crônier C., Feist R., and Auffray J.-C.. 2004. Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach. Paleobiology 30:470480.
Darwin C., and Wallace A. R.. 1958. Evolution by natural selection: a centenary commemorative volume. Cambridge University Press, Cambridge.
Dieckmann U., and Doebeli M.. 1999. On the origin of species by sympatric speciation. Nature 400:354357.
De Baets K., Klug C., and Monnet C.. 2012. Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:7594.
Doebeli M., Blok H. J., Leimar O., and Dieckmann U.. 2007. Multimodal pattern formation in phenotype distributions of sexual populations. Proceedings of the Royal Society B 274:347357.
Feist R., McNamara K. J., Crônier C., and Lerosey-Aubril R.. 2009. Patterns of extinction and recovery of phacopid trilobites during the Frasnian-Famennian (Late Devonian) mass extinction event, Canning Basin, Western Australia. Geological Magazine 146:1233.
Fisher F. M. 1970. Tests of equality between sets of coefficients in two linear regressions: An expository note. Econometrica 38:361366.
Frankham R., Ballou J. D., and Briscoe D. A.. 2002. Introduction to Conservation Genetics. Cambridge: Cambridge University Press.
Frýda J., Ferrová L., and Frýdová B.. 2013. Review of palaeozygopleurid gastropods (Palaeozygopleuridae, Gastropoda) from Devonian strata of the Perunica microplate (Bohemia), with a re-evaluation of their stratigraphic distribution, notes on their ontogeny, and descriptions of new taxa. Zootaxa 3669:469489.
Galle A., and Parsley R. L.. 2005. Epibiont relationships on hyolithids demonstrated by Ordovician trepostomes (Bryozoa) and Devonian tabulates (Anthozoa). Bulletin of Geosciences 80:125138.
Gradstein F. M., Ogg J. G., Schmitz M., and Ogg G.. 2012. The Geologic Time Scale 2012. Elsevier.
Hallgrímsson B., and Hall B. K.. 2005. Variation: a central concept in biology. Elsevier, Amsterdam.
Hammer Ø., Harper D. A. T., and Ryan P. D.. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:19.
Hammer Ø., and Harper D. A. T.. 2006. Paleontological Data Analysis. Blackwell.
Harzsch S., and Hafner G.. 2006. Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Structure & Development 35:319340.
Havlíček V., and Vaněk J.. 1998. Pragian brachiopods, trilobites, and principal biofacies in the Prague Basin (Lower Devonian, Bohemia). Sborník geologických věd, Řada P, Paleontologie 34:27109.
Hawle I., and Corda A. J. C.. 1847. Prodrom einer Monographie der böhmischen Trilobiten. J.G. Calve, Prague. Reprint, 1848. Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften 5:117292.
Hunt G. 2007. Variation and early evolution. Science 317:459460.
Kaufmann B. 1997. Middle Devonian reef and mud mounds on a carbonate ramp: Mader Basin (eastern Anti-Atlas, Morocco). Geological Society, London, Special Publications 149:417435.
Kaufmann B 1998. Facies, stratigraphy and diagenesis of Middle Devonian reef- and mud-mounds in the Mader (eastern Anti-Atlas, Morocco). Acta Geologica Polonica 48:43106.
Klapper G., and Vodrážková S.. 2013. Ontogenetic and intraspecific variation in the late Emsian-Eifelian (Devonian) conodonts Polygnathus serotinus and P. bultyncki in the Prague Basin (Czech Republic) and Nevada (western U.S.). Acta Geologica Polonica 63:153174.
Klingenberg C. P., and McIntyre G. S.. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:13631375.
Kristjánsson B. K., Skúlason S., and Noakes D. L. G.. 2002. Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Biological Journal of the Linnean Society 76:247257.
Kříž J. 1999. Geologické památky Prahy. Český geologický ústav, Praha.
Levi-Setti R., Clarkson E. N. K., and Horwáth G.. 1998). Paleontologia dell’occhio. Pp. 365–379 in Frontiere della Vita: Enciclopedia Italiana.
Lomax R. G. 2007. Statistical Concepts: A Second Course for Education and the Behavioral Sciences, (3rd edition). Lawrence Erlbaum Associates, Mahwah, New Jersey.
Mann H. B., and Whitney D. R.. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics 18:5060.
Månsson K., and Clarkson E. N. K.. 2012. Ontogeny of the Upper Cambrian (Furongian) olenid trilobite Protopeltura aciculata (Angelin, 1854) from Skåne and Våstergötland, Sweden. Palaeontology 55:887901.
Martin R. A., and Pfenning D.W.. 2012. Widespread disruptive selection in the wild is associated with intense resource competition. BMC. Evolutionary Biology 12:136149.
Maynard Smith J. 1962. Disruptive selection, polymorphism and sympatric speciation. Nature 195:6062.
Nilsson D. E., and Kelber A.. 2007. A functional analysis of compound eye evolution. Arthropod Structure and Development 36:373385.
Oakley T. H. 2003. On Homology of Arthropod Compound Eyes. Integrative and Comparative Biology 43:522530.
Perner J. 1918. Trilobiti pasma D-d1, z okoli pražského. Palaeontographica Bohemiae 9:151.
Popp A., and Pärnaste H.. 2011. Biometry and life style of the Ordovician proetide trilobite Cyamella stensioei Owens, 1979. GFF 133:111123.
Ramel C. 1998. Biodiversity and intraspecifiic genetic variation. Pure and Applied Chemistry 70:20792084.
Richter R. 1854. Thüringische Tentaculiten. Zeitschrift der Deutschen Geologischen Gesellschaft 6:275290.
Rohlf F. J. 1993. Relative warps analysis and an example of its application to mosquito wings. Pp. 131159in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, eds. Contributions to morphometrics. Madrid, Museu Nacional de Ciencias Naturales.
Rohlf F. J 2003a. TpsSuper. Version 1.06. Department of Ecology and Evolution, State University of New York, Stony Brook, NY.
Rohlf F. J 2003b. TpsRelw. Version 1.21. Department of Ecology and Evolution, State University of New York, Stony Brook, NY.
Rohlf F. J., and Slice D. E.. 1990. Extensions of the Procrustes methods for the optimal superimposition of landmarks. Systematic Zoology 39:4950.
Rueffler C., T., Van Dooren J. M., Leimar O., and Abrams P. A.. 2006. Disruptive selection and then what? Trends in Ecology and Evolution 21:238245.
Rundle H. D., and Nosil P.. 2005. Ecological speciation. Ecology Letters 8:336352.
Růžička R. 1940. Faunistické seznamy z Barrandienu ze souvrství gα v okolí pražském. Věstník Královské české společnosti nauk, Třída mathematicko přírodovědná, 1–25.
Růžička R 1941. Faunistické seznamy z Barrandienu ze souvrství gα (část II) a ze dvou lokalit gγ v okolí pražském. Věstník Královské české společnosti nauk, Třída mathematicko přírodovědná, 1–16.
Salgado-Ugarte I. H., Shimizu M., and Taniuchi T.. 1994. Exploring the shape of univariate data using Kernel density estimators. Stata Technical Bulletin 16:819.
Salgado-Ugarte I. H., Shimizu M., Taniuchi T., and Matsushita K.. 2002. Nonparametric Assessment of Multimodality for Size Frequency Distributions. Asian Fisheries Science 15:295303.
Schluter D. 2000. The Ecology of Adaptive Radiation. New York: Oxford University Press.
Silverman B. W. 1986. Density estimation for statistics and data analysis. Chapman & Hall.
Skúlason S., and Smith T. B.. 1995. Resource polymorphisms in vertebrates. Trends in Ecology & Evolution 10:366370.
Slavík L. 2004a. A new conodont zonation of the Pragian Stage (Lower Devonian) in the Stratotype area (Barrandian, Central Bohemia). Newsletters on Stratigraphy 40:3971.
Slavík L 2004b. The Pragian-Emsian conodont successions of the Barrandian area: search of an alternative to the GSSP polygnathid-based. Geobios 37:454470.
Slavík L., Valenzuaela-Ríos J. I., Hladil J., and Carls P.. 2007. Early Pragian conodont-based correlations between the Barrandian area and the Spanish Central Pyrenees. Geological Journal 42:499512.
Suchý V. 2002. The “white beds” – a fossil caliche of the Barrandian area: its origin and paleoenvironmental significance. Journal of the Czech Geological Society 47:4554.
Thomas A. T. 1998. Variation in the eyes of the Silurian trilobites Eophacops and Acaste and its significance. Palaeontology 41:897911.
Urdy S., Goudemand N., Bucher H., and Chirat R.. 2010. Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. Journal of Experimental Zoology Part B 314:303326.
Vaněk J. 1999. Pražský stupeň (spodní devon) v Pražské pánvi a relativní stáří jeho faciií (Česká republika). Part 2. New taxa of trilobites from Pragian, Bohemia. Palaeontologia Bohemiae 5:3967.
Vodrážková S., Frýda J., Suttner T. J., Koptíková L., and Tonarová P.. 2013. Environmental changes close to the Lower–Middle Devonian boundary; the Basal Chotec Event in the Prague Basin (Czech Republic). Facies 59:425449.
Woldřich J. 1919. Das Prokopital südlich von Prag. Jahrbuch der k.k. geologischen Reichsanstalt 68:63112.
Waloszek D., Chen J.-Y., Maas A., and Wang X.-G.. 2005. Early Cambrian arthropods - new insights into arthropod head and structural evolution. Arthropod Structure and Development 34:189205.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 105 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th December 2017. This data will be updated every 24 hours.