Skip to main content

Ion microprobe–measured stable isotope evidence for ammonite habitat and life mode during early ontogeny

  • Benjamin J. Linzmeier (a1), Neil H. Landman (a2), Shanan E. Peters (a3), Reinhard Kozdon (a4), Kouki Kitajima (a5) and John W. Valley (a5)...

Ammonites have disparate adult morphologies indicative of diverse ecological niches, but ammonite hatchlings are small (~1 mm diameter), which raises questions about the similarity of egg incubation and hatchling life mode in ammonites. Modern Nautilus is sometimes used as a model organism for understanding ammonites, but despite their outward similarities, the groups are only distantly related. Trends in ammonite diversity and extinction vulnerability in the fossil record contrast starkly with those of nautilids, and embryonic shells from Late Cretaceous ammonites are two orders of magnitude smaller than nautilid embryonic shells. To investigate possible environmental changes experienced by ammonite hatchlings, we used secondary ion mass spectrometry to analyze the oxygen and carbon isotope composition of the embryonic shells and early postembryonic whorls of five juveniles of Hoploscaphites comprimus obtained from a single concretion in the Fox Hills Formation of South Dakota. Co-occurring bivalves and diagenetic calcite were also analyzed to provide a benthic baseline for comparison. The oxygen isotope ratios of embryonic shells are more like those of benthic bivalves, suggesting that ammonite eggs were laid on the bottom. Ammonite shell immediately after hatching has more negative δ18O, suggesting movement to more shallow water that is potentially warmer and/or fresher. After approximately one whorl of postembryonic growth, the values of δ18O become more positive in three of the five individuals, suggesting that these animals transitioned to a more demersal mode of life. Two other individuals transition to even lower δ18O values that could suggest movement to nearshore brackish water. These data suggest that ammonites, like many modern coleoids, may have spawned at different times of the year. Because scaphites were one of the short-term Cretaceous–Paleogene extinction survivors, it is possible that this characteristic allowed them to develop a broader geographic range and, consequently, a greater resistance to extinction.

Hide All
Aguiar, D. C. de, Rossi-Wongtschowski, C. L. D. B., and Perez, J. A. A.. 2012. Validation of daily growth increments of statoliths of Brazilian squid Doryteuthis plei and D. sanpaulensis (Cephalopoda. Loliginidae). Bioikos 26:1321.
Allison, P. A., and Pye, K.. 1994. Early diagenetic mineralization and fossil preservation in modern carbonate concretions. Palaios 9:561575.
Amiotte-Suchet, P., Aubert, D., Probst, J. L., Gauthier-Lafaye, F., Probst, A., Andreux, F., and Viville, D.. 1999. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges Mountains, France). Chemical Geology 159:129145.
Arkhipkin, A. I., and Laptikhovsky, V. V.. 2012. Impact of ocean acidification on plankton larvae as a cause of mass extinctions in ammonites and belemnites. Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen 266:3950.
Aubert, M., Williams, I. S., Boljkovac, K., Moffat, I., Moncel, M.-H., Dufour, E., and Grün, R.. 2012. In situ oxygen isotope micro-analysis of faunal material and human teeth using a SHRIMP II: a new tool for palaeo-ecology and archaeology. Journal of Archaeological Science 39:31843194.
Bhattacharya, J. P., and MacEachern, J. A.. 2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research 79:184209.
Boletzky, S. v. 1983. Embyronic phase. Pp. 531. in P. R. Boyle, ed. Cephalopod life cycles Vol. 2. Comparative reviews. Academic Press, London.
Boletzky, S. von. 1978. Nos connaissances actuelles sur le développement des Octopodes. Vie Milieu 28:85120.
Bucher, H., Landman, N. H., Klofak, S. M., and Guex, J.. 1996. Mode and rate of growth in ammonoids. Pp. 407461. in N. H. Landman, K. Tanabe, and R. A. Davis, eds. Ammonoid paleobiology. Topics in Geobiology Vol. 13. Plenum, New York.
Cherns, L., and Wright, V. P.. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.
Clements, T., Colleary, C., De Baets, K., and Vinther, J.. 2017. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60:114.
Cobban, W. A., Merewether, E. A., Fouch, T. D., and Obradovich, J. D.. 1994. Some Cretaceous shorelines in the Western Interior of the United States. Pp. 393425. in M. V. Caputo, J. A. Peterson, and K. J. Franczyk, eds. Mesozoic systems of the Rocky Mountain region, USA. SEPM Rocky Mountain Section, Denver.
Cochran, J. K., Landman, N. H., Turekian, K. K., Michard, A., and Schrag, D. P.. 2003. Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 191:4564.
Cusack, M., England, J., Dalbeck, P., Tudhope, A. W., Fallick, A. E., and Allison, N.. 2008. Electron backscatter diffraction (EBSD) as a tool for detection of coral diagenesis. Coral Reefs 27:905911.
De Baets, K., Klug, C., and Korn, D.. 2011. Devonian pearls and ammonoid-endoparasite co-evolution. Acta Palaeontologica Polonica 56:159180.
De Baets, K., Klug, C., Korn, D., and Landman, N. H.. 2012. Early evolutionary trends in ammonoid embryonic development. Evolution 66:17881806.
De Baets, K., Landman, N. H., and Tanabe, K.. 2015. Ammonoid embryonic development. Pp. 113205. in C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: From anatomy to ecology. Springer, Dordrecht, Netherlands.
Dennis, K. J., Cochran, J. K., Landman, N. H., and Schrag, D. P.. 2013. The climate of the Late Cretaceous: new insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil. Earth and Planetary Science Letters 362:5165.
Dutton, A., Huber, B. T., Lohmann, K. C., and Zinsmeister, W. J.. 2007. High-resolution stable isotope profiles of a dimitobelid belemnite: implications for paleodepth habitat and Late Maastrichtian climate seasonality. Palaios 22:642650.
Etches, S., Clarke, J., and Callomon, J.. 2009. Ammonite eggs and ammonitellae from the Kimmeridge Clay Formation (Upper Jurassic) of Dorset, England. Lethaia 42:204217.
Fatherree, J. W., Harries, P. J., and Quinn, T. M.. 1998. Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from the Pierre Shale (upper Campanian) of South Dakota; implications for paleoenvironmental reconstructions. Palaios 13:376385.
Fisher, C. G., and Arthur, M. A.. 2002. Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 188:189213.
Forsythe, J. W., and Van Heukelem, W. J.. 1987. Growth. Pp. 135156. in P. R. Boyle, ed. Cephalopod life cycles Vol. 2. Comparative reviews. Academic Press, London.
Gill, J. R., and Cobban, W. A.. 1966. The Red Bird section of the Upper Cretaceous Pierre Shale in Wyoming, with a section on a new echinoid from the Cretaceous Pierre Shale of eastern Wyoming. U.S. Geological Survey Professional Paper 393-A, 173.
Gillikin, D. P., Lorrain, A., Meng, L., and Dehairs, F.. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71:29362946.
Grossman, E. L., and Ku, T.-L.. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology: Isotope Geoscience 59:5974.
Hain, M. P., Sigman, D. M., and Haug, G. H.. 2014. The biological pump in the past. Pp. 485517. in H. D. Holland, and K. K. Turekian, eds. Treatise on geochemistry, 2nd ed. Elsevier, Oxford.
Hein, J. R., Normark, W. R., McIntyre, B. R., Lorenson, T. D., and Powell, C. L.. 2006. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California. Geology 34:109112.
Ivany, L. C. 2012. Reconstructing paleoseasonality from accretionary skeletal carbonates - Challenges and opportunities. In L. C. Ivany and B. T. Huber, eds. Earth’s deep-time climate—the state of the art in 2012, Paleontological Society Short Course, November 3, 2012. Paleontological Society Papers 18:133–165.
Ivany, L. C., Wilkinson, B. H., and Jones, D. S.. 2003. Using stable isotopic data to resolve rate and duration of growth throughout ontogeny: an example from the surf clam. Spisula solidissima. Palaios 18:126137.
Jablonski, D., and Hunt, G.. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.
Jacobs, D. K., and Chamberlain, J. A.. 1996. Buoyancy and hydrodynamics in ammonoids. Pp. 169224. in N. H. Landman, K. Tanabe, and R. A. Davis, eds. Ammonoid paleobiology. Topics in Geobiology Vol. 13. Plenum, New York.
Jacobs, D. K., and Landman, N. H.. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101111.
Jacobs, D. K., Landman, N. H., and Chamberlain, J. A.. 1994. Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905908.
Jones, D. S. 1983. Sclerochronology: reading the record of the molluscan shell. American Scientist 71:384391.
Killick, R., and Eckley, I.. 2014. changepoint: an R package for changepoint analysis. Journal of Statistical Software 58:119.
Killingley, J. S., and Berger, W. H.. 1979. Stable isotopes in a mollusk shell: detection of upwelling events. Science 205:186188.
Kim, S.-T., Mucci, A., and Taylor, B. E.. 2007a. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: revisited. Chemical Geology 246:135146.
Kim, S.-T., O’Neil, J. R., Hillaire-Marcel, C., and Mucci, A.. 2007b. Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta 71:47044715.
Kita, N. T., Ushikubo, T., Fu, B., and Valley, J. W.. 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chemical Geology 264:4357.
Klug, C., Riegraf, W., and Lehmann, J.. 2012. Soft-part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55:13071331.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.
Kozdon, R., Ushikubo, T., Kita, N. T., Spicuzza, M., and Valley, J. W.. 2009. Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: real vs. apparent vital effects by ion microprobe. Chemical Geology 258:327337.
Kozdon, R., Kelly, D. C., Kitajima, K., Strickland, A., Fournelle, J. H., and Valley, J. W.. 2013. In situ δ18O and Mg/Ca analyses of diagenetic and planktic foraminiferal calcite preserved in a deep-sea record of the Paleocene–Eocene thermal maximum. Paleoceanography 28:517528.
Kröger, B., Vinther, J., and Fuchs, D.. 2011. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. BioEssays 33:602613.
Kroopnick, P., Weiss, R. F., and Craig, H.. 1972. Total CO2,13C, and dissolved oxygen 18O at Geosecs II in the North Atlantic. Earth and Planetary Science Letters 16:103110.
Kroopnick, P. M. 1985. The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Research, part A (Oceanographic Research Papers) 32:5784.
Kruta, I., Landman, N. H., and Cochran, J. K.. 2014. A new approach for the determination of ammonite and nautilid habitats. PLoS ONE 9:e87479.
Kulicki, C. 1996. Ammonoid shell microstructure. Pp. 65101. in N. H. Landman, K. Tanabe, and R. A. Davis, eds. Ammonoid paleobiology. Topics in Geobiology Vol. 13. Plenum, New York.
Kump, L. R., and Slingerland, R. L.. 1999. Circulation and stratification of the early Turonian Western Interior Seaway: sensitivity to a variety of forcings. Pp. 181–190 in E. Barrera and C. C. Johnson, eds. Evolution of the Cretaceous ocean–climate system. Geological Society of America Special Paper 332.
Landman, N. H. 1987. Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: systematics, developmental patterns, and life history. Bulletin of the American Museum of Natural History 185:117241.
Landman, N. H., and Cobban, W. A.. 2007. Redescription of the Late Cretaceous (Late Santonian) ammonite Desmoscaphites bassleri Reeside, 1927, from the Western Interior of North America. Rocky Mountain. Geology 42:6794.
Landman, N. H., and Cochran, J. K.. 2010. Growth and longevity of Nautilus . Pp. 401420. in W. B. Saunders, and N. H. Landman, eds. Nautilus: the biology and paleobiology of a living fossil. Topics in Geobiology Vol. 6. Springer, Dordrecht, Netherlands.
Landman, N. H., and Klofak, S. M.. 2012. Anatomy of a concretion: life, death and burial in the Western Interior Seaway. Palaios 27:672693.
Landman, N. H., and Waage, K. M.. 1993. Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bulletin of the American Museum of Natural History 215:1257.
Landman, N. H., Rye, D. M., and Shelton, K. L.. 1983. Early ontogeny of Eutrephoceras compared to recent Nautilus and Mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiology 9:269279.
Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M.. 1994. Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens. Paleobiology 20:4051.
Landman, N. H., Tanabe, K., and Shigeta, Y.. 1996. Ammonoid embryonic development. Pp. 343405. in N. H. Landman, K. Tanabe, and R. A. Davis, eds. Ammonoid paleobiology. Topics in Geobiology Vol. 13. Plenum, New York.
Landman, N. H., Klofak, S. M., and Sarg, K. B.. 2008. Variation in adult size of scaphitid ammonites from the Upper Cretaceous Pierre Shale and Fox Hills Formation. Pp. 149194. in. High-resolution approaches in stratigraphic paleontology. Springer, Dordrecht, Netherlands.
Landman, N. H., Cobban, W. A., and Larson, N. L.. 2012a. Mode of life and habitat of scaphitid ammonites. Geobios 45:8798.
Landman, N. H., Cochran, J. K., Larson, N. L., Brezina, J., Garb, M. P., and Harries, P. J.. 2012b. Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology 40:507510.
Landman, N. H., Remin, Z., Garb, M. P., and Chamberlain, J. A. Jr. 2013. Cephalopods from the Badlands National Park area, South Dakota: reassessment of the position of the Cretaceous/Paleogene boundary. Cretaceous Research 42:127.
Landman, N. H., Goolaerts, S., Jagt, J. W. M., Jagt-Yazykova, E. A., Machalski, M., and Yacobucci, M. M.. 2014. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42:707710.
Landman, N. H., Grier, J. C., Grier, J. W., Cochran, J. K., and Klofak, S. M.. 2015. 3-D orientation and distribution of ammonites in a concretion from the Upper Cretaceous Pierre Shale of Montana. Swiss. Journal of Palaeontology 134:257279.
Lécuyer, C., and Bucher, H.. 2006. Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth Discussions 1:119.
Lemanis, R., Zachow, S., Fusseis, F., and Hoffmann, R.. 2015. A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells. Paleobiology 41:313329.
Linzmeier, B. J., Kozdon, R., Peters, S. E., and Valley, J. W.. 2016. Oxygen isotope variability within Nautilus shell growth bands. PLoS ONE 11:e0153890.
Linzmeier, B. J., Kitajima, K., Denny, A. C., and Cammack, J. N.. 2018. Making maps on a micrometer scale. Eos 99.
Lukeneder, A. 2015. Ammonoid habitats and life history. Pp. 689791. in C. Klug, D. Korn, K. D. Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: From anatomy to ecology. Springer, Dordrecht, Netherlands.
Lukeneder, A., Harzhauser, M., Müllegger, S., and Piller, W. E.. 2010. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth and Planetary Science Letters 296:103114.
Macintyre, I. G., and Reid, R. P.. 1995. Crystal alteration in a living calcareous alga (Halimeda): Implications for studies in skeletal diagenesis. Journal of Sedimentary Research 65:143153.
Mapes, R. H., and Nützel, A.. 2009. Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341356.
McConnaughey, T. A., and Gillikin, D. P.. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28:287299.
McCorkle, D. C., Emerson, S. R., and Quay, P. D.. 1985. Stable carbon isotopes in marine porewaters. Earth and Planetary Science Letters 74:1326.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.. 1997. Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep-Sea Research, part I (Oceanographic Research Papers) 44:9831024.
Melzner, F., Gutowska, M. A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M. C., Bleich, M., and Pörtner, H. O.. 2009. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:23132331.
Miller, A. I., and Foote, M.. 2009. Epicontinental seas versus open-ocean settings: the kinetics of mass extinction and origination. Science 326:11061109.
Miller, R. G. 1981. Simultaneous statistical inference. Springer Series in Statistics. Springer-Verlag, New York.
Mironenko, A. A., and Rogov, M. A.. 2015. First direct evidence of ammonoid ovoviviparity. Lethaia 49:245260.
Moriya, K. 2015. Isotope signature of ammonoid shells. Pp. 793836. in C. Klug, D. Korn, K. D. Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: From anatomy to ecology. Springer, Dordrecht, Netherlands.
Moriya, K., Nishi, H., Kawahata, H., Tanabe, K., and Takayanagi, Y.. 2003. Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167170.
Myers, C. E., MacKenzie, R. A., and Lieberman, B. S.. 2012. Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135148.
Orland, I. J. 2012. Seasonality from speleothems: high-resolution ion microprobe studies at Soreq Cave, Israel. Ph.D. dissertation. University of Wisconsin–Madison. 304 pp.
Orland, I. J., Bar-Matthews, M., Kita, N. T., Ayalon, A., Matthews, A., and Valley, J. W.. 2009. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quaternary Research 71:2735.
Orland, I. J., Edwards, R. L., Cheng, H., Kozdon, R., Cross, M., and Valley, J. W.. 2015a. Direct measurements of deglacial monsoon strength in a Chinese stalagmite. Geology 43:555558.
Orland, I. J., Kozdon, R., Linzmeier, B. J., Wycech, J., Śliwiński, M. G., Kitajima, K., Kita, N. T., and Valley, J. W.. 2015b. Enhancing the accuracy of carbonate δ18O and δ13C measurements by SIMS. AGU fall meeting, San Francisco. Abstract PP52B-03.
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:10506–10511.
Peters, S. E. 2007. The problem with the Paleozoic. Paleobiology 33:165181.
Peters, S. E., Husson, J. M., and Czaplewski, J.. 2018. Macrostrat: a platform for geological data integration and deep-time Earth crust research. Geochemistry, Geophysics, Geosystems 19:13931409.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W., Carpenter, S. J., Erickson, J. M., Matsunaga, K. K. S., Smith, S. Y., and Sheldon, N. D.. 2016. Temperature and salinity of the Late Cretaceous Western Interior Seaway. Geology 44:903906.
R Core Team 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ritterbush, K. A., Hoffmann, R., Lukeneder, A., and De Baets, K.. 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292:229241.
Rocha, F., and Guerra, Á.. 1996. Signs of an extended and intermittent terminal spawning in the squids Loligo vulgaris Lamarck and Loligo forbesi Steenstrup (Cephalopoda: Loliginidae). Journal of Experimental Marine Biology and Ecology 207:177189.
Rocha, F., Guerra, Á., and González, Á. F.. 2001. A review of reproductive strategies in cephalopods. Biological Reviews 76:291304.
Rollion-Bard, C., Mangin, D., and Champenois, M.. 2007. Development and application of oxygen and carbon isotopic measurements of biogenic carbonates by ion microprobe. Geostandards and Geoanalytical Research 31:3950.
Romanek, C. S., Grossman, E. L., and Morse, J. W.. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56:419430.
Rude, P. D., and Aller, R. C.. 1991. Fluorine mobility during early diagenesis of carbonate sediment: an indicator of mineral transformations. Geochimica et Cosmochimica Acta 55:24912509.
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J.. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.
Sessa, J. A., Ivany, L. C., Schlossnagle, T. H., Samson, S. D., and Schellenberg, S. A.. 2012. The fidelity of oxygen and strontium isotope values from shallow shelf settings: Implications for temperature and age reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 342–343:2739.
Sessa, J. A., Larina, E., Knoll, K., Garb, M., Cochran, J. K., Huber, B. T., MacLeod, K. G., and Landman, N. H.. 2015. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. Proceedings of the National Academy of Sciences USA 112:15562–15567.
Shackleton, N. J., and Kennett, J. P.. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project 29:743–755. Government Printing Office, Washington, D.C.
Shigeta, Y. 1993. Post-hatching early life history of Cretaceous ammonoidea. Lethaia 26:133145.
Śliwiński, M. G., Kitajima, K., Kozdon, R., Spicuzza, M. J., Fournelle, J. H., Denny, A., and Valley, J. W.. 2016a. Secondary ion mass spectrometry bias on isotope ratios in dolomite–ankerite, part 1: δ18O matrix effects. Geostandards and Geoanalytical Research 40:157172.
Śliwiński, M. G., Kitajima, K., Kozdon, R., Spicuzza, M. J., Fournelle, J. H., Denny, A., and Valley, J. W.. 2016b. Secondary ion mass spectrometry bias on isotope ratios in dolomite–ankerite, part 2: δ13C matrix effects. Geostandards and Geoanalytical Research 40:173184.
Speden, I. G. 1970. The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Part 2. Systematics of the Bivalvia. Bulletin of the Peabody Museum of Natural History 33:1222.
Stephen, D. A., Bylund, K. G., Garcia, P., McShinsky, R. D., and Carter, H. J.. 2012. Taphonomy of dense concentrations of juvenile ammonoids in the Upper Cretaceous Mancos Shale, east-central Utah, USA. Geobios 45:121128.
Stevens, K., Mutterlose, J., and Wiedenroth, K.. 2015. Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—implications for habitat reconstructions of extinct cephalopods. Palaeogeography, Palaeoclimatology, Palaeoecology 417:164175.
Stinnesbeck, W., Frey, E., and Zell, P.. 2016. Evidence for semi-sessile early juvenile life history in Cretaceous ammonites. Palaeogeography, Palaeoclimatology, Palaeoecology 457:186194.
Summers, W. C. 1983. Loligo pealei (Pp. 115142. in P. R. Boyle, ed. Cephalopod life cycles Vol. 1. Species accounts. Academic Press, London.
Tanabe, K., Landman, N. H., and Kruta, I.. 2012. Microstructure and mineralogy of the outer calcareous layer in the lower jaws of Cretaceous Tetragonitoidea and Desmoceratoidea (Ammonoidea). Lethaia 45:191199.
Tobin, T. S., Schauer, A. J., and Lewarch, E.. 2011. Alteration of micromilled carbonate δ18O during Kiel device analysis. Rapid Communications in Mass Spectrometry 25:21492152.
Tomašových, A., Schlögl, J., Biroň, A., Hudáčková, N., and Mikuš, T.. 2017. Taphonomic clock and bathymetric dependence of cephalopod preservation in bathyal, sediment-starved environments. Palaios 32:135152.
Tsujita, C. J., and Westermann, G. E. G.. 1998. Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 144:135160.
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R.. 1951. Measurement of paleotemperatures and temperatures of England, Denmark, and the southeastern United States. GSA Bulletin 62:399416.
Valley, J. W., and Kita, N. T.. 2009. In situ oxygen isotope geochemistry by ion microprobe. In M. Fayek, ed. Secondary ion mass spectrometry in the earth sciences. Mineralogical Association of Canada Short Course Series 41:19–63.
Vetter, L., Kozdon, R., Valley, J. W., Mora, C. I., and Spero, H. J.. 2014. SIMS measurements of intrashell δ13C in the cultured planktic foraminifer Orbulina universa . Geochimica et Cosmochimica Acta 139:527539.
Waage, K. M. 1965. The Late Cretaceous coleoid cephalopod Actinosepia canadensis Whiteaves. In Postilla, Vol. 94. Peabody Museum of Natural History, Yale University, New Haven, Conn., pp. 1–33.
Waage, K. M. 1968. The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, part 1. Stratigraphy and paleoenvironments. Bulletin of the Peabody Museum of Natural History 27:33.
Walter, L. M., Bischof, S. A., Patterson, W. P., Lyons, T. W., O’Nions, R. K., Gruszczynski, M., Sellwood, B. W., and Coleman, M. L.. 1993. Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry [and discussion]. Philosophical Transactions of the Royal Society of London A 344:2736.
Wani, R. 2007. How to recognize in situ fossil cephalopods: evidence from experiments with modern Nautilus . Lethaia 40:305311.
Wani, R. 2011. Sympatric speciation drove the macroevolution of fossil cephalopods. Geology 39:10791082.
Ward, P. D., and Bandel, K.. 1987. Life history strategies in fossil cephalopods. Pp. 329350. in P. R. Boyle, ed. Cephalopod life cycles Vol. 2. Comparative reviews. Academic Press, London.
Westermann, G. E. G. 1996. Ammonid life and habitat. Pp. 607707. in N. H. Landman, K. Tanabe, and R. A. Davis, eds. Ammonoid paleobiology. Topics in Geobiology Vol. 13. Plenum, New York.
Whitney, N. M., Wanamaker, A. D., Kreutz, K. J., and Introne, D. S.. 2017. Spatial and temporal variability in the δ18Ow and salinity compositions of Gulf of Maine coastal surface waters. Continental Shelf Research 137:163171.
Wierzbowski, H. 2007. Effects of pre-treatments and organic matter on oxygen and carbon isotope analyses of skeletal and inorganic calcium carbonate. International Journal of Mass Spectrometry 268:1629.
Worms, J. 1983. Loligo vulgaris. Pp. 143157. in P. R. Boyle, ed. Cephalopod life cycles Vol. 1. Species accounts. Academic Press, London.
Wycech, J., Kelly, D. C., Kozdon, R., Orland, I. J., Spero, H. J., and Valley, J. W.. 2018. Comparison of δ18O analyses on individual planktic foraminifer (Orbulina universa) shells by SIMS and gas-source mass spectrometry. Chemical Geology 483:119130.
Zakharov, Y., Shigeta, Y., Smyshlyaeva, O., Popov, A., and Ignatiev, A.. 2006. Relationship between δ13C and δ18O values of the Recent Nautilus and brachiopod shells in the wild and the problem of reconstruction of fossil cephalopod habitat. Geosciences Journal 10:331345.
Zakharov, Y. D., Shigeta, Y., Popov, A. M., Velivetskaya, T. A., and Afanasyeva, T. B.. 2011. Cretaceous climatic oscillations in the Bering area (Alaska and Koryak Upland): Isotopic and palaeontological evidence. Sedimentary Geology 235:122131.
Zumholz, K., Hansteen, T. H., Klügel, A., and Piatkowski, U.. 2006. Food effects on statolith composition of the common cuttlefish (Sepia officinalis). Marine Biology 150:237244.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score