Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T17:12:26.057Z Has data issue: false hasContentIssue false

The live, the dead, and the very dead: taphonomic calibration of the recent record of paleoecological change in Lake Tanganyika, East Africa

Published online by Cambridge University Press:  08 April 2016

Simone R. Alin
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721
Andrew S. Cohen
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721

Abstract

High-resolution (annual to decadal) paleoecological records of community composition can contribute a long-term perspective to conservation biology on baseline ecological variability and the response of communities to environmental change. We present here a detailed comparison of species assemblage characteristics (species richness, abundance, composition, and occurrence frequency) in live, dead, and recent fossil ostracode samples from Lake Tanganyika, East Africa. This study calibrates the fidelity of paleoecological samples (i.e., both death and fossil assemblages) to live diversity patterns for the purpose of reconstructing community dynamics through time.

Both life and death assemblages were collected from rocky sites in a mixed substrate habitat (total of ten sampling visits over 22-month period) over spatial scales of less than a meter to about 3–12 meters. Fossil assemblages were derived from sediment cores collected in sandy substrates adjacent to the rocky sites. Species richness in paleoecological assemblages is comparable to that in a year's accumulation of life assemblages sampled approximately monthly. The temporal resolution of the fossil samples in Lake Tanganyika could thus be as short as one year. Species abundance distributions were statistically indistinguishable among data sets. Rank abundance tests demonstrated that death and fossil assemblages were quite similar, although life assemblages differed substantially in the composition of their dominant species. Species composition differences between life and paleoecological assemblages appear to reflect the area of spatial integration represented by an assemblage—i.e., death and fossil assemblages are integrated over multiple habitat types, whereas life assemblages dominantly represent the rocky habitats where they were collected. Species occurrence frequencies in paleoecological data identified ecologically persistent species and may be useful for delimiting local species pools. Analysis of sampling efficiency indicates that approximately 28% of species in each paleoecological assemblage are “unique”; i.e., they are not likely to be present in an additional subsample from the same sample. Ordination reveals that life assemblages of ostracodes are characterized by high spatiotemporal heterogeneity. Variability in species composition was lower in paleoecological assemblages, presumably as a result of spatial and temporal averaging.

Death and fossil assemblages of Lake Tanganyika appear to preserve many characteristics of living benthic ostracode assemblages with high fidelity. Spatiotemporal averaging allows paleoecological assemblages to render information about the average composition of ostracode communities over short timescales, at spatial scales of several meters, and across habitat types. Sampling shell assemblages in surficial sediments thus represents a more efficient way of assessing the average ecological conditions at a locality than repeated live sampling. Furthermore, paleoecological analyses can generate novel insights into long-term community variability and membership with direct relevance to conservation.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alin, S. R., Cohen, A. S., Bills, R., Gashagaza, M. M., Michel, E., Tiercelin, J. J., Martens, K., Coveliers, P., Mboko, S. K., West, K., Soreghan, M., Kimbadi, S., and Ntakimazi, G. 1999. Effects of landscape disturbance on animal communities in Lake Tanganyika, East Africa. Conservation Biology 13:10171033.Google Scholar
Alin, S. R., O'Reilly, C. M., Cohen, A. S., Dettman, D. L., Palacios-Fest, M. R., and McKee, B. A. 2002. Effects of land-use change on aquatic biodiversity: a view from the paleorecord at Lake Tanganyika, East Africa. Geology 30:11431146.Google Scholar
Anderson, N. J. 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology and Evolution 8:356361.Google Scholar
Binford, M. W., Brenner, M., Whitmore, T. J., Higuera, G. A., Deevey, E. S., and Leyden, B. 1987. Ecosystems, paleoecology and human disturbance in subtropical and tropical America. Quaternary Science Reviews 6:115128.Google Scholar
Birkett, C., Murtugudde, R., and Allan, T. 1999. Indian Ocean climate event brings floods to East Africa's lakes and the Sudd Marsh. Geophysical Research Letters 26:10311034.Google Scholar
Brenner, M., Whitmore, T. J., Flannery, M. S., and Binford, M. W. 1993. Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake and Reservoir Management 7:209217.Google Scholar
Brenner, M., Whitmore, T. J., Lasi, M. A., Cable, J. E., and Cable, P. H. 1999. A multi-proxy trophic state reconstruction for shallow Orange Lake, Florida, USA: possible influence of macrophytes on limnetic nutrient concentrations. Journal of Paleolimnology 21:215233.Google Scholar
Cao, Y., Williams, D. D., and Williams, N. E. 1998. How important are rare species in aquatic community ecology and bioassessment? Limnology and Oceanography 43:14031409.Google Scholar
Cohen, A. S. 1995. Paleoecological approaches to the conservation biology of benthos in ancient lakes: a case study from Lake Tanganyika. Journal of the North American Benthological Society 14:654668.Google Scholar
Cohen, A. S. 2000. Linking spatial and temporal change in the diversity structure of ancient lakes: examples from the ecology and palaeoecology of the Tanganyikan ostracodes. Advances in Ecological Research 31:521537.Google Scholar
Cohen, A. S., Bills, R., Cocquyt, C. Z., and Caljon, A. G. 1993. The impact of sediment pollution on biodiversity in Lake Tanganyika. Conservation Biology 7:667677.Google Scholar
Davies, D. J., Powell, E. N., and Stanton, R. J. 1989. Relative rates of shell dissolution and net accumulation—a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22:207212.Google Scholar
Davis, M., Douglas, C., Calcote, R., Cole, K. L., Winkler, M. G., and Flakne, R. 2000. Holocene climate in the Western Great Lakes national parks and lakeshores: implications for future climate change. Conservation Biology 14:968983.Google Scholar
DuCasse, O., and Carbonel, P. 1994. Recent Cytherideinae (Crustacea, Ostracoda) from Lake Tanganyika. Archaeocyprideis tuberculata n. gen. n. sp.: systematics, distribution, ecology. Revue de Micropaleontologie 37:97112.Google Scholar
Finney, B. P., Gregory-Eaves, I., Sweetman, J., Douglas, M. S. V., and Smol, J. P. 2000. Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290:795799.Google Scholar
Fürsich, F. T., and Flessa, K. W. 1987. Taphonomy of tidal flat molluscs in the northern Gulf of California: paleoenvironmental analysis despite the perils of preservation. Palaios 2:543559.Google Scholar
Gulliksen, B., and Derås, K. M. 1975. A diver-operated suction sampler for fauna on rocky bottoms. Oikos 26:246249.Google Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., and Warner, R. R. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629638.Google Scholar
Johnson, T. C. 1984. Sedimentation in large lakes. Annual Review of Earth and Planetary Sciences 12:179204.Google Scholar
Kidwell, S. M. 2001a. Ecological fidelity of molluscan death assemblages. Pp. 199221in Aller, J. Y., Woodin, S. A., and Aller, R. C., eds. Proceedings of the 1998 organism-sediment interactions symposium. University of South Carolina Press, Columbia.Google Scholar
Kidwell, S. M. 2001b. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 116209in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1995. The quality of the fossil record: populations species, and communities. Annual Review of Ecology and Systematics 26:269299.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.Google Scholar
Kowalewski, M., Avila Serrano, G. E., Flessa, K. W., and Goodfriend, G. A. 2000. Dead delta's former productivity: two trillion shells at the mouth of the Colorado River. Geology 28:10591062.Google Scholar
Levin, I. and Kromer, B. 1997. Twenty years of atmospheric 14CO2observations at Schauinsland station, Germany. Radiocarbon 39:205218.Google Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.Google Scholar
MacPhee, R. D. E., ed. 1999. Extinctions in near time: causes, contexts, and consequences. Advances in Vertebrate Paleobiology. Kluwer Academic, New York.Google Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J.Google Scholar
Martens, K. 1985. Tanganyikacypridopsis gen.n. (Crustacea, Ostracoda) from Lake Tanganyika. Zoologica Scripta 14:221230.Google Scholar
Martin, R. E., and Liddell, D. W. 1988. Foraminiferal biofacies on a north coast fringing reef (1–75 m), Discovery Bay, Jamaica. Palaios 3:298314.Google Scholar
Miller, G. H., Magee, J. W., Johnson, B. J., Fogel, M. L., Spooner, N. A., McCulloch, M. T., and Ayliffe, L. K. 1999. Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283:205208.Google Scholar
Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89107.Google Scholar
Nakai, K., Kawanabe, H., and Gashagaza, M. M. 1994. Ecological studies on the littoral cichlid communities of Lake Tanganyika: the coexistence of many endemic species. in Martens, K., Goddeeris, B., and Coulter, G., eds. Speciation in ancient lakes. Advances in Limnology 44:373389E.Schweizerbart'sche, Stuttgart.Google Scholar
Nydal, R., and Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88:36213642.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152176.Google Scholar
Park, L. E., and Martens, K. 2001. Four new species of Gomphocythere from Lake Tanganyika, East Africa (Crustacea, Ostracoda). Hydrobiologia 450:129147.Google Scholar
Pettitt, A. N., and Stephens, M. A. 1977. The Kolmogorov-Smirnov goodness-of-fit statistic with discrete and grouped data. Technometrics 19:205210.Google Scholar
Pielou, E. C. 1984. The interpretation of ecological data. Wiley, New York.Google Scholar
Rodriguez, C. A., Flessa, K. W., and Dettman, D. L. 2001. Effects of upstream diversion of Colorado River water on the estuarine bivalve mollusc Mulinia coloradoensis. Conservation Biology 15:249258.Google Scholar
Rome, D. R. 1962. Exploration Hydrobiologique du Lac Tanganyika. Institut Royal des Sciences Naturelles de Belgique, Brussels.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, New York.Google Scholar
Russell, M. P. 1991. Modern death assemblages and Pleistocene fossil assemblages in open coast high energy environments, San Nicolas Island, California. Palaios 6:179191.Google Scholar
Sail, J., and Lehman, A. 1996. JMP Start Statistics: a guide to statistics and data analysis using JMP and JMP IN software. Duxbury, Belmont, Calif.Google Scholar
Simpson, G. G. 1960. Notes on the measurement of faunal resemblance. American Journal of Science 258a:300311.Google Scholar
Steadman, D. W. 1995. Prehistoric extinctions of Pacific Island birds: biodiversity meets zooarchaeology. Science 267:11231131.Google Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, F. G., van der Plicht, J., and Spurk, M. 1998a. INTCAL98 Radiocarbon age calibration 24,0000 cal BP. Radiocarbon 40:10411083.Google Scholar
Stuiver, M., Reimer, P. J., and Braziunas, T. F. 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:11271151.Google Scholar
ter Braak, C. J. F., and Prentice, I. C. 1988. A theory of gradient analysis. Advances in Ecological Research 18:271317.Google Scholar
ter Braak, C. J. F., and Smilauer, P. 1998. CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination, Version 4. Microcomputer Power, Ithaca, N.Y.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the Californian Pleistocene. Paleobiology 15:8394.Google Scholar
Wells, T. M., Cohen, A. S., Park, L. E., Dettman, D. L., and McKee, B. A. 1999. Ostracode stratigraphy and paleoecology from surficial sediments of Lake Tanganyika, Africa. Journal of Paleolimnology 22:259276.Google Scholar
Wolfe, A. P. 1996. Spatial patterns of modern diatom distribution and multiple paleolimnological records from a small arctic lake on Baffin Island, Arctic Canada. Canadian Journal of Botany 74:435449.Google Scholar
Wouters, K. 1988. On Romecytheridea ampla Wouters sp. nov. Stereo-Atlas of Ostracod Shells 15:101106.Google Scholar
Wouters, K., and Martens, K. 1992. Contribution to the knowledge of Tanganyikan cytheraceans, with the description of Mesocyprideis nom. nov. (Crustacea, Ostracoda). Bulletin de L'Institut Royal des Sciences Naturelles de Belgique 62:159166.Google Scholar
Wouters, K., and Martens, K. 1994. Contribution to the knowledge of the Cyprideis species flock (Crustacea: Ostracoda) of Lake Tanganyika, with the description of three new species. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique 64:111128.Google Scholar
Wouters, K., and Martens, K. 1999. Four new species of the Cyprideis species flock (Crustacea: Ostracoda) of Lake Tanganyika. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique 69:6782.Google Scholar
Wouters, K., and Martens, K. 2001. On the Cyprideis species flock (Crustacea, Ostracoda) in Lake Tanganyika, with the description of four new species. Hydrobiologia 450:111127.Google Scholar
Zar, J. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar