Skip to main content

Morphological evolution of the bivalve Ptychomya through the Lower Cretaceous of Argentina

  • Pablo S. Milla Carmona (a1), Darío G. Lazo (a1) and Ignacio M. Soto (a2)

The complex morphological evolution of the bivalve Ptychomya throughout the well-studied Agrio Formation in the Neuquén Basin (west-central Argentina, lower/upper Valanginian–lowest Barremian) constitutes an ideal opportunity to study evolutionary patterns and processes occurring at geological timescales. Ptychomya is represented in this unit by four species, the morphological variation of which needs to be temporally assessed to obtain a thorough picture of the evolution of the group. Here we use geometric morphometrics to measure variation in shell outline, ribbing pattern, and shell size in these species. We bracket the ages of our samples using a combination of ammonoid biostratigraphy and absolute ages and study the anagenetic pattern of evolution of each trait by means of paleontological time-series analysis and change tracking. We find that evolution in Ptychomya is mostly speciational, as the majority of traits show stasis, with the exceptions of shell size in P. coihuicoensis and shell outline in P. windhauseni, which seem to evolve directionally toward larger and higher shells, respectively. Ptychomya displays changes in its average morphology and disparity, which are the result of a mixture of taxonomic turnover and mosaic evolution of traits. Pulses of speciation would have been triggered by ecological opportunity, as they occur during the recovery of shallow-burrowing bivalve faunas after dysoxic events affecting the basin. On the other hand, the presence of directional patterns of evolution in P. coihuicoensis and P. windhauseni seems to be the result of a general shallowing-upward trend observed in the basin during the upper Hauterivian–lowest Barremian, as opposed to the cyclical paleoenvironmental stability inferred for the early/late Valanginian–early Hauterivian, which would have prompted stasis in P. koeneni and P. esbelta.

Hide All
Adams, D. C., and Collyer, M. L.. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:11431154.
Adams, D. C., and Otárola-Castillo, E.. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4:393399.
Álvarez, J. M., and Pérez, D. E.. 2016. Gerontic intraspecific variation in the Antarctic bivalve Retrotapes antarcticus . Ameghiniana 53:485494.
Aguirre-Urreta, M. B., and Rawson, P. F.. 2012. Lower Cretaceous ammonites from the Neuquen Basin, Argentina: a new heteromorph fauna from the uppermost Agrio Formation. Cretaceous Research 35:208216.
Aguirre-Urreta, M. B., Mourgues, F. A., Rawson, P. F., Bulot, L. G., and Jaillard, E.. 2007. The Lower Cretaceous Chañnarcillo and Neuquen Andean basins: ammonoid biostratigraphy and correlations. Geological Journal 42:143173.
Aguirre-Urreta, M. B., Price, G. D., Ruffell, A. H., Lazo, D. G., Kalin, R. M., Ogle, N., and Rawson, P. F.. 2008. Southern Hemisphere Early Cretaceous (Valanginian–early Barremian) carbon and oxygen isotope curves from the Neuquén Basin, Argentina. Cretaceous Research 29:8799.
Aguirre-Urreta, M. B., Lazo, D. G., Griffin, M., Vennari, V., Parras, A. M., Cataldo, C., Garberoglio, R., and Luci, L.. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. Relatorio del XVIII Congreso Geológico Argentino, 465488.
Aguirre-Urreta, M. B., Lescano, M., Schmitz, M. D., Tunik, M., Concheyro, A., Rawson, P. F., and Ramos, V. A.. 2015. Filling the gap: new precise Early Cretaceous radioisotopic ages from the Andes. Geological Magazine 152:557564.
Archuby, F. M., Wilmsen, M., and Leanza, H. A.. 2011. Integrated stratigraphy of the upper Hauterivian to lower Barremian Agua de la Mula Member of the Agrio Formation, Neuquen Basin, Argentina. Acta Geologica Polonica 61:126.
Blomberg, S. P., Garland, T., and Ives, A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.
Bokma, F. 2002. Detection of punctuated equilibrium from molecular phylogenies. Journal of Evolutionary Biology 15:10481056.
Bonhomme, V., Picq, S., Gaucherel, C., and Claude, J.. 2014. Momocs: outline analysis using R. Journal of Statistical Software 56:124.
Butler, M. A., and King, A. A.. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist 164:683695.
Cataldo, C. S., and Lazo, D. G.. 2016. Taxonomy and paleoecology of a new gastropod fauna from dysoxic outer ramp facies of the Lower Cretaceous Agrio Formation, Neuquén Basin, Argentina. Cretaceous Research 57:165189.
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp 83115. in T. Schopf, ed. Models in paleobiology. Freeman, Cooper, San Francisco.
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.
Gould, S. J., and Eldredge, N.. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.
Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika 40:3351.
Guler, M. V., Lazo, D. G., Pazos, P. J., Borel, C. M., Ottone, E. G., Tyson, R. V., Cesaretti, N., and Aguirre-Urreta, M. B.. 2013. Palynofacies analysis and palynology of the Agua de la Mula Member (Agrio Formation) in a sequence stratigraphy framework, Lower Cretaceous, Neuquén Basin, Argentina. Cretaceous Research 41:6581.
Hannisdal, B. 2007. Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology 33:98115.
Harmon, L. J., Schulte, J. A. II, Larson, A., and Losos, J. B.. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961963.
Harmon, L. J., Losos, J. B., Davies, J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A. II, Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., and Mooers, A. Ø.. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:23852396.
Hopkins, M. J., and Lidgard, S.. 2012. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proceedings of the National Academy of Sciences USA 109:2052020525.
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D.. 2005. The Neuquén Basin: an overview. In G. D Veiga, L. A. Spalletti, J. A. Howell, and E. Schwarz, eds. The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publications. 252:114.
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.
Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences USA 104:1840418408.
Hunt, G. 2008. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. In From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontological Society Papers 14:117131.
Hunt, G. 2015. paleoTS: analyze paleontological time-series. R package, Version 0.5-1.
Hunt, G., Bell, M. A., and Travis, M. P.. 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700710.
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.
Jackson, J. B., and Cheetham, A. H.. 1999. Tempo and mode of speciation in the sea. Trends in Ecology and Evolution 14:7277.
Kucera, M., and Malmgren, B. A.. 1998. Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera. Paleobiology 24:4963.
Kuhl, F. P., and Giardina, C. R.. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18:236258.
Lazo, D. G. 2006. Análisis tafonómico e inferencia del grado de mezcla temporal y espacial de la macrofauna del Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de cuenca Neuquina, Argentina. Ameghiniana 43:311326.
Lazo, D. G. 2007a. Análisis de biofacies y cambios relativos del nivel del mar en el Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de la cuenca Neuquina, Argentina. Ameghiniana 44:7389.
Lazo, D. G. 2007b. Early Cretaceous bivalves from the Neuquén Basin, west-central Argentina: notes on taxonomy, palaeobiogeography and palaeoecology. Geological Journal 42:127142.
Lazo, D. G., and Luci, L.. 2013. Revision of Valanginian Steinmanellinae bivalves from the Neuquén basin, west-central Argentina, and their biostratigraphic implications. Cretaceous Research 45:6075.
Lazo, D. G., Aguirre-Urreta, M. B., Price, G. D., Rawson, P. F., Ruffell, A. H., and Ogle, N.. 2008. Palaeosalinity variations in the Early Cretaceous of the Neuquén Basin, Argentina: evidence from oxygen isotopes and palaeoecological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 260:477493.
Legarreta, L., and Gulisano, C. A.. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico Superior–Terciario Inferior, Argentina). In G. A. Chebli, and L. A. Spalletti, eds. Cuencas sedimentarias argentinas, Simposio de cuencas sedimentarias argentinas. X Congreso Geológico Argentino, Tucuman. 221243.
Losos, J. B., and Mahler, D. L.. 2010. Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. Pp 381420. in M. A. Bell, D. J. Futuyma, W. F. Eanes, and J. S. Levinton, eds. Evolution since Darwin: the first 150 years. Sinauer, Sunderland, Mass.
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape visualization and analysis. Paleobiology 25:107138.
MacLeod, N. 2009. Form and shape models. Palaeontological Association Newsletter 72:1427.
MacLeod, N. 2013. Landmarks and semilandmarks: differences without meaning and meaning without difference. Palaeontological Association Newsletter 82:3243.
Milla Carmona, P. S., Lazo, D. G., and Soto, I. M.. 2016. Giving taxonomic significance to the morphological variability in the bivalve Ptychomya Agassiz. Palaeontology 59:139154.
Milla Carmona, P. S., Lazo, D. G., and Soto, I. M.. 2017. Taxonomy of the bivalve Ptychomya in the Lower Cretaceous of the Neuquén Basin (west-central Argentina). Papers in Palaeontology 3:219240.
O’Meara, B. C., Ané, C., Sanderson, M. J., and Wainwright, P. C.. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922933.
Pagel, M., Venditti, C., and Meade, A.. 2006. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314:119121.
Payne, L. P., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Tessa, M. H., and Skotheim, J. M.. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:29292939.
Pazos, P. J., Lazo, D. G., Tunik, M. A., Marsicano, C. A., Fernandez, D. E., and Aguirre-Urreta, M. B.. 2012. Paleoenvironmetal framework of dinosaur tracksites and other ichnofossils in Early Cretaceous mixed siliciclastic-carbonate deposits in the Neuquen Basin, northern Patagonia (Argentina). Gondwana Research 22:11251140.
R Core Team 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Revell, L. J., Johnson, M. A., Schulte, J. A. II, Kolbe, J. J., and Losos, J. B.. 2007. A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution 61:28982912.
Rohlf, F. J. 2016. tpsDig, Version 2.26. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, N.Y.
Rohlf., F. J., and Slice, D. E.. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:4059.
Sheldon, P. R. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127:209227.
Sidlauskas, B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:31353156.
Spalletti, L. A., Poiré, D. G., Schwarz, E., and Veiga, G. D.. 2001. Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonate–siliciclastic ramp: Neuquén Basin, Argentina. Journal of South American Earth Sciences 14:609624.
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125:1296.
Tyson, R. V., Esherwood, P., and Pattison, K. A.. 2005. Organic facies variations in the Valanginian–mid-Hauterivian interval of the Agrio Formation (Chos Malal area, Neuquén Argentina): local significance and global context. In L. A. Spalletti, J. A. Howell, and E. Schwarz, eds. The Neuquén Basin, Argentina: a case of study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publications. 252:251266.
Veiga, G. D., Spalletti, L. S., and Flint, S.. 2002. Aeolian/fluvial interactions and high resolution sequence stratigraphy of a non-marine lowstand wedge: the Avilé Member of the Agrio Formation (Lower Cretaceous), central Neuquén Basin, Argentina. Sedimentology 49:10011019.
Weaver, C. E. 1931. Paleontology of the Jurassic and Cretaceous of west-central Argentina. Memoirs of the University of Washington 1:1595.
Wellborn, G. A., and Langerhans, R. B.. 2015. Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution 5:176195.
Yoder, J. B., Clancey, E., Des Roches, S., Eastman, J. M., Gentry, L., Godsoe, W., Hagey, T. J., Jochimsen, D., Oswald, B. P., Robertson, J., Sarver, B. A. J., Schenks, J. J., Spear, S. F., and Harmon, L. J.. 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23:15811596.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 382 *
Loading metrics...

* Views captured on Cambridge Core between 24th January 2018 - 21st July 2018. This data will be updated every 24 hours.