Skip to main content Accessibility help

A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells

  • Robert Lemanis (a1), Stefan Zachow (a2), Florian Fusseis (a3) and René Hoffmann (a1)

The chambered shell of modern cephalopods functions as a buoyancy apparatus, allowing the animal to enter the water column without expending a large amount of energy to overcome its own weight. Indeed, the chambered shell is largely considered a key adaptation that allowed the earliest cephalopods to leave the ocean floor and enter the water column. It has been argued by some, however, that the iconic chambered shell of Paleozoic and Mesozoic ammonoids did not provide a sufficiently buoyant force to compensate for the weight of the entire animal, thus restricting ammonoids to a largely benthic lifestyle reminiscent of some octopods. Here we develop a technique using high-resolution computed tomography to quantify the buoyant properties of chambered shells without reducing the shell to ideal spirals or eliminating inherent biological variability by using mathematical models that characterize past work in this area. This technique has been tested on Nautilus pompilius and is now extended to the extant deep-sea squid Spirula spirula and the Jurassic ammonite Cadoceras sp. hatchling. Cadoceras is found to have possessed near-neutral to positive buoyancy if hatched when the shell possessed between three and five chambers. However, we show that the animal could also overcome degrees of negative buoyancy through swimming, similar to the paralarvae of modern squids. These calculations challenge past inferences of benthic life habits based solely on calculations of negative buoyancy. The calculated buoyancy of Cadoceras supports the possibility of planktonic dispersal of ammonite hatchlings. This information is essential to understanding ammonoid ecology as well as biotic interactions and has implications for the interpretation of geochemical data gained from the isotopic analysis of the shell.

Hide All
Abel, R. L., Laurini, C. R., and Richter, M.. 2012. A palaeobiologist’s guide to “virtual”micro-CT preparation. Palaeontologia Electronica 15:6T.
Arnold, J. M., Landman, N. H., and Mutvei, H.. 2010. Development of the embryonic shell of Nautilus. Pp. 373400in W. Bruce Saunders and Neil H. Landman, eds. Springer Netherlands.
Bandel, K. 1982. Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7(1): 1197.
Bandel, K., and Boletzky, S.. 1979. A comparative study of the structure, development, and morphological relationships of chambered cephalopod shells. Veliger 21:313354.
Bartol, I. K., Krueger, P. S., Stewart, W. J., and Thompson, J. T.. 2009. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers. Journal of Experimental Biology 212:15061518.
Boletzky, S. 2002. Yolk sac morphology in cephalopod embryos. In H. Summesberger, K. Histon, and H. E. A. Daurer, eds. Cephalopods—present and past. Abhandlungen der Geologischen Bundesanstalt 57:5768.
Bruun, A. F. 1943. The biology of Spirula spirula (L.). Dana Report 24:148.
Calow, S. 1987. Fact and theory—an overview. Pp. 351365in P. R. Boyle, ed. Cephalopod life cycles, Vol. II. Comparative reviews. Academic Press, London.
Chamberlain, J. A. 1976. Flow patterns and drag coefficient of cephalopod shells. Palaeontology 19:539563.
Chamberlain, J. A 1981. Hydromechanical design of fossil cephalopods. In M. R. House, and J. R. Senior, eds. The Ammonoidea. Systematics Association Special Volume 18:289336. Academic Press, New York.
Chamberlain, J. A 1993. Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios 26:4961.
Chamberlain, J. A 2010. Locomotion of Nautilus. Pp. 489–525 in Saunders and Landman 2010.
Chun, C. 1915. Die Cephalopoden: Myopsida, Octopoda. Pp. 405522. in Wissenschaftliche Ergebnisse Der Deutschen Tiefsee-Expedition, “Valdivia” 1898–1899, Vol. 18. Gustav Fischer, Jena.
Crick, R. E. 1988. Buoyancy regulation and macroevolution in nautiloid cephalopods. Senckenbergiana Lethaea 69:2.
Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., and Donoghue, P. C. J.. 2014. A virtual world of paleontology. Trends in Ecology and Evolution 29:6.
Currie, E. D. 1957. The mode of life of certain goniatites. Transactions of the Geological Society of Glasgow 22:169186.
Daniel, T. L., Helmuth, B. S., Saunders, W. B., and Ward, P. D.. 1997. Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470481.
Davis, R. A. 2010. Nautilus studies—the first twenty-two centuries. Pp. 3–21 in Saunders and Landman 2010.
De Baets, K., Klug, C., Korn, D., and Landman, N. H.. 2012. Early evolutionary trends in ammonoid embryonic development. Evolution 66:17881806.
Delanoy, G., Magnin, A., Selebran, M., and Selebran, J.. 1991. Moutoniceras nodosum d’Orbigny, 1850 (Ammonoidea, Ancyloceratina) une très grande ammonite heteromorphe du Barremien inferieur. Revue de Paleobiologie 10:229245.
Denton, E. J., and Gilpin-Brown, J. B.. 1966. On the buoyancy of the pearly Nautilus. Journal of the Marine Biological Association of the United Kingdom 46:723759.
Denton, E. J., and Gilpin-Brown, J. B.. 1973. Floatation mechanisms in modern and fossil cephalopods. Advances in Marine Biology 11:197268.
Derham, W. 1726. Philosophical experiments and observations of the late eminent Dr. Robert Hooke, S.R.S. and Geom. Prof. Gresh., and other eminent virtuoso’s in his time. W. Derham, London.
Diener, C. 1912. Lebensweise und Verbreitung der Ammoniten. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 192:6789.
Dietl, G. 1978. Die heteromorphen Ammoniten des Dogger (Stratigraphie, Taxonomie, Phylogenie, Ökologie). Stuttgarter Beiträge zur Naturkunde B 33:197.
Drushchits, V. V., Doguzhayeva, L. A., and Lominadze, T. A.. 1977. Internal structural features of the shell of middle Callovian ammonites. Paleontological Journal 1977(3): 1629.
Ebel, K. 1983. Berechnungen zur schwebefähigkeit von ammoniten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1983:614640.
Ebel, K 1990. Swimming abilities of ammonites and limitations. Palaeontologische Zeitschrift 64:2538.
Ebel, K 1992. Mode of life and soft body shape of heteromorph ammonites. Lethaia 25:179193.
Ebel, K 1999. Hydrostatics of fossil ectocochleate cephalopods and its significance for the reconstruction of their lifestyle. Paläontologische Zeitschrift 73:277288.
Engeser, T. 1996. The position of the Ammonoidea within the Cephalopoda. Pp. 3–19 in Landman et al. 1996b.
Engeser, T., and Keupp, H.. 2002. Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 35:7996.
Frech, F. 1915. Loses und geschlossenes Gehäuse der tetrabranchiaten Cephalopoden. Centralblatt für Mineralogie, Geologie und Paläontologie 16:593606.
Greenwald, L., and Ward, P. D.. 2010. Buoyancy in Nautilus. Pp. 547–560 in Saunders and Landman 2010.
Harries, P. J., Kauffman, E. G., and Hansen, T. A.. 1996. Models for biotic survival following mass extinction. In M. B. Hart, ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication 102:4160.
Hassan, M. A., Westermann, G. E. G., Hewitt, R. A., and Dokainish, M. A.. 2002. Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology 28:113126.
Haury, L., and Weihs, D.. 1976. Energetically efficient swimming behavior of negatively buoyant zooplankton. Limnology and Oceanography 21:797803.
Heptonstall, W. B. 1970. Buoyancy control in ammonoids. Lethaia 3:317328.
Hewitt, R. A., Westermann, G. E. G., and Checa, A.. 1993. Growth rates of ammonites estimated from aptychi. Geobios Mémoire Special (Villeurbanne) 15:203208.
Higashiura, K., and Okamoto, T.. 2012. Life orientation of heteromorph ammonites under the negatively buoyant condition: a case study on the Eubostrychoceras muramotoi Matsumoto. Fossils (Kaseki) 92:1930.
Hoffmann, R., and Zachow, S.. 2011. Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). IAMG 2011 Publication. doi: 10.5242.iamg.2011.0163.
Hoffmann, R., Schultz, J. A., Schellhorn, R., Rybacki, E., Keupp, H., Gerden, S. R., Lemanis, R., and Zachow, S.. 2014. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research. Biogeosciences 11:27212739.
House, M. R. 1965. A study in the Tornoceratidae: the succession of Tronoceras and related genera in the North American Devonian. Philosophical Transactions of the Royal Society of London B 250:79130.
House, M. R 1985. The ammonoid time-scale and ammonoid evolution. Geological Society of London Memoirs 10:273283.
House, M. R 1996. Juvenile goniatites survival strategies following Devonian extinction events. In M. B. Hart, ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication. 102:163185.
Jacobs, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18:203220.
Jacobs, D. K., and Chamberlain, J.. 1996. Buoyancy and hydrodynamics in ammonoids. Pp. 169–224 in Landman et al. 1996b.
Jacobs, D. K., and Landman, N. H.. 1993. Nautilus—a poor model for the function and behavior of ammonoids. Lethaia 26:101111.
Klinger, H. C. 1981. Speculations on buoyancy control and ecology in some heteromorph ammonites. In M. R. House and J. R. Senior, eds. The Ammonoidea. Systematics Association Special Volume 18: 337355. Academic Press, New York.
Klug, C., and Korn, D.. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49:235242.
Korn, D., Hopkins, M. J., and Walton, S. A.. 2013. Extinction space—a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67:27952810.
Kröger, B. 2001. Comments on Ebel’s benthic-crawler hypothesis for ammonoids and extinct nautiloids. Paläontologische Zeitschrift 75:123125.
Kröger, B 2002. On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35:6170.
Kröger, B., Vinther, J., and Fuchs, D.. 2011. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 33:602613.
Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P.. 2011. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:7072.
Kruta, I., Landman, N. H., and Cochran, J. K.. 2014. A new approach for the determination of ammonite and nautilid habitats. PLoS ONE 9:e87479.
Kulicki, C., and Wierzbowski, H.. 1983. The Jurassic juvenile ammonites of the Jagua Formation, Cuba. Acta Palaeontologica Polonica 28(3–4), 369384.
LaBarbera, M. 2008. Hydrodynamics. Pp. 322326in D. E. G. Briggs, and P. R. Crowther, eds. Palaeobiology II. Blackwell Science, Oxford.
Landman, N. H., Tanabe, K., and Shigeta, Y.. 1996a. Ammonoid embryonic development. Pp. 343–405 in Landman et al. 1996b.
Landman, N. H., Tanabe, K., and Davis, R. A. eds. 1996b. Ammonoid paleobiology. Plenum, New York.
Lehmann, W. M. 1932. Stereo-Röntgenaufnahmen als Hilfsmittel bei der Untersuchung von Versteinerungen. Natur und Museum 62:323330.
Longridge, L. M., Smith, P. L., Rawlings, G., and Klaptocz, V.. 2009. The impact of asymmetries in the elements of the phragmocone of Early Jurassic ammonites. Palaeontologia Electronica 12:15.
Lukeneder, A., Harzhauser, M., Muelleffer, S. S., and Piller, W. E.. 2010. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth and Planetary Science Letters 296:103114.
Manger, W., Stephen, D., and Meeks, L.. 1999. Possible cephalopod reproductive mass mortality reflected by Middle Carboniferous assemblages, Arkansas, southern United States. Pp. 345364in F. Oloriz and F. Rodriguez-Tovar, eds. Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York.
Mapes, R. H., and Nützel, A.. 2009. Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341356.
Martins, R. S., Roberts, M. J., Lett, C., Chang, N., Moloney, C.L., Camargo, M. G., and Vidal, E. A. G.. 2013. Modelling transport of chokka squid (Loligo reynaudii) paralarvae off South Africa: reviewing, testing and extending the “westward transport hypothesis”. Fisheries Oceanography 23:116131.
Matsumoto, T., and Obata, I.. 1962. Notes on Baculites facies. Kaseki 3:5763.
Meister, C., and Piuz, A.. 2013. Late Cenomanian–Early Turonian ammonites of the southern Tethys margin from Morocco to Oman: biostratigraphy, paleobiogeography and morphology. Cretaceous Research 44:83103.
Monks, N., and Young, J. R.. 1998. Body position and the functional morphology of Cretaceous Heteromorph ammonites. Palaeontologia Electronica 1:15.
Monnet, C., De Baets, K., and Klug, C.. 2011. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evolutionary Biology 11:115.
Moreno-Bedmar, J. A., Barragán Manzo, R., Company Sempere, M., and Bulot, L. G.. 2013. Aptian (lower Cretaceous) ammonite biostratigraphy of the Francisco Zarco Dam stratigraphic section (Durango State, northeast Mexico). Journal of South American Earth Sciences 42:150158.
Moriya, K., Nishi, H., Kawahata, H., Tanabe, K., and Takayanagi, Y.. 2003. Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167170.
Moseley, H. 1838. On the geometrical forms of turbinated and discoid shells. Philosophical Transactions of the Royal Society of London 128:351370.
Mutvei, H. 1983. Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre. Lethaia 16:233240.
Mutvei, H., and Dunca, E.. 2007. Connecting ring ultrastructure in the Jurassic ammonoid Quenstedtoceras with discussion on mode of life of ammonoids. Pp. 239256in N. H. Landman, R. A. Davis, and R. H. Mapes, eds. Cephalopods present and past: new insights and fresh perspectives. Springer, Dordrecht.
Naglik, C., Monnet, C., Goetz, S., Kolb, C., De Baets, K., Tajika, A., and Klug, C.. 2014. Growth trajectories of some major ammonoid sub-clades revealed by serial grinding tomography data. Lethaia. doi: 10.1111/let.12085.
O’dor, R., Wells, J., and Wells, M. J.. 1990. Speed, jet pressure and oxygen consumption relationships in free-swimming Nautilus. Journal of Experimental Biology 154:383396.
Okamoto, T. 1988. Changes in life orientation during the ontogeny of some heteromorph ammonoids. Palaeontology 31:281294.
Okamoto, T 1996. Theoretical modeling of ammonoid morphology. Pp. 225–251 in Landman et al. 1996b.
Parent, H., Westermann, G. E. G., and Chamberlain, J. A. Jr. 2014. Ammonite aptychi: functions and role in propulsion. Geobios 47:4555.
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.
Raup, D. M., and Chamberlain, J. A. Jr. 1967. Equations for volume and center of gravity in ammonoid shells. Journal of Paleontology 41:566574.
Raven, J. A., and Waite, A. M.. 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytologist 162:4561.
Rein, S. 1999. On the swimming abilities of Ceratites De Haan and Germanonautilus Mojsisovics from the Upper Muschelkalk (Middle Triassic). Freiberger Forschungsheft 481:3947.
Reyment, R. A. 1958. Some factors in the distribution of fossil cephalopods. Stockholm Contributions in Geology 1:97184.
Reyment, R. A 1980. Floating orientations of cephalopod shell models. Palaeontology 23:931936.
Rieppel, O. 2002. Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zoological Journal of the Linnean Society 135:3363.
Ritterbush, K. A., and Bottjer, D. J.. 2012. Westermann morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424446.
Ritterbush, K. A., Hoffmann, R., Lukeneder, A., and De Baets, K.. 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292:229241.
Rouget, I., and Neige, P.. 2001. Embryonic ammonoid shell features: intraspecific variation revisited. Palaeontology 44:5364.
Sato, T., and Tanabe, K.. 1998. Cretaceous plesiosaurs ate ammonites. Nature 394:629630.
Saunders, W. B., and Landman, N. H., eds. 2010. Nautilus: the biology and paleobiology of a living fossil. Plenum, New York.
Shevyrev, A. A. 2005. Heteromorph ammonoids of the Triassic: a review. Paleontological Journal 39 (Suppl 5):614628.
Shigeta, Y. 1993. Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26:133145.
Staaf, D. J., Gilly, W. F., and Denny, M. W.. 2014. Aperture effects in squid jet propulsion. Journal of Experimental Biology 217:15881600.
Stock, S. R. 2008. Microcomputed tomography: methodology and applications. CRC Press, Boca Raton, Fla.
Sutton, M., Rahman, I., and Garwood, R.. 2013. Techniques for virtual palaeontology. Wiley, Chichester, U.K.
Tajika, A., and Wani, R.. 2011. Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287298.
Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D., and Klug, C.. 2014. Empirical 3-D model of the conch of the Middle Jurassic ammonite microconch Normannites: its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology (in press).
Tanabe, K. 1975. Functional morphology of Otoscaphites puerculus (Jimbo), an Upper Cretaceous ammonite. Transactions and Proceedings of the Palaeontological Society of Japan, new series 99:109132.
Tanabe, K 1979. Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology 22:609630.
Tanabe, K 2011. The feeding habits of ammonites. Science 331:3738.
Tanabe, K., Shigeta, Y., and Mapes, R. H.. 1995. Early life history of Carboniferous ammonoids inferred from analysis of shell hydrostatics and fossil assemblages. Palaios 10:8086.
Tanabe, K., Landman, N. H., and Kruta, I.. 2012. Microstructure and mineralogy of the outer calcareous layer in the lower jaws of Cretaceous Tetragonitoidea and Desmoceratoidea (Ammonoidea). Lethaia 45:191199.
Teichert, C. 1967. Major features of cephalopod evolution. Pp. 162210in C. Teichert and E. L. Yochelson, eds. Essays in paleontology and stratigraphy: R. C. Moore commemorative volume. University of Kansas Press, Lawrence.
Thompson, d’A. W. 1917. On growth and form. Cambridge University Press, Cambridge.
Trueman, A. E. 1941. The ammonite body-chamber, with special reference to the buoyancy and mode of Life of the living ammonite. Quarterly Journal of the Geological Society 96:339383.
Walton, S. A., Korn, D., and Klug, C.. 2010. Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events. Swiss Journal of Geosciences 103:475494.
Ward, P. D. 1987. The natural history of Nautilus. Allen and Unwin, Boston.
Ward, P. D., and Bandel, K.. 1987. Life history strategies in fossil cephalopods. Pp. 329350in P. R. Boyle, ed. Cephalopod life cycles, Vol. II. Academic Press, London.
Ward, P. D., and Westermann, G. E. G.. 1976. Sutural inversion in a heteromorph ammonite and its implication for septal formation. Lethaia 9:357361.
Ward, P. D., and Westermann, G. E. G.. 1977. First occurrence, systematics, and functional morphology of Nipponites (Cretaceous Lytoceratina) from the Americas. Journal of Paleontology 51:367372.
Ward, P. D., Stone, R., Westermann, G. E. G., and Martin, A.. 1977. Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3:377388.
Warnke, K., and Keupp, H.. 2005. Spirula—a window to the embryonic development of ammonoids? Morphological and molecular indications for a palaeontological hypothesis. Facies 51:6065.
Westermann, G. E. G. 1993. On alleged negative buoyancy of ammonoids. Lethaia 26:246246.
Westermann, G. E. G 1996. Ammonoid life and habitat. Pp. 607–707 in Landman et al. 1996b.
Westermann, G. E. G 1999. Life habits of nautiloids. Pp. 263298in E. Savazzi, ed. Functional morphology of the invertebrate skeleton. Wiley, Chichester, U.K.
Westermann, G. E. G 2013. Hydrostatics, propulsion and life habits of the Cretaceous ammonoid Baculites. Revue de Paléobiologie 32:249265.
Westermann, G. E. G., and Tsujita, C. J.. 1999. Life habits of ammonoids. Pp. 299325in E. Savazzi, ed. Functional morphology of the invertebrate skeleton. Wiley, Chichester, U.K.
Wetzel, W.. 1959. Über Ammoniten-Larven. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 107:240252.
Wilga, C. D., and Lauder, G. V.. 2002. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. Journal of Experimental Biology 205:23652374.
Wright, J. K. 2012. Ammonites. Geology Today 28:186191.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed