Skip to main content
×
Home
    • Aa
    • Aa

Paleocommunity Analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: Comparison with the Walcott Quarry and Implications for Community Variation in the Burgess Shale

  • Lorna J. O’Brien (a1) (a2) and Jean-Bernard Caron (a3) (a4)
Abstract
Abstract

The Tulip Beds locality on Mount Stephen (Yoho National Park, British Columbia) yields one of the most abundant and diverse (~10,000 specimens in 110 taxa) Burgess Shale fossil assemblages in the Canadian Rockies. Detailed semi quantitative and quantitative analyses of this assemblage suggest strong similarities with the Walcott Quarry on Fossil Ridge. Both assemblages are dominated by epibenthic, sessile, and suspension feeding taxa, mostly represented by arthropods and sponges and have comparable diversity patterns, despite sharing only about half the genera. However, the Tulip Beds has a higher relative abundance of suspension feeders and taxa of unknown affinity compared to the Walcott Quarry. These biotic variations are probably largely attributable to ecological and evolutionary differences between the two temporally distinct communities that adapted to similar, but not identical, environmental settings. For instance, the Tulip Beds is farther away from the Cathedral Escarpment than the Walcott Quarry. The Tulip Beds and Walcott Quarry assemblages are more similar to each other than either one is to the assemblages of the Chengjiang biota, although the relative diversity of major taxonomic groups and ecological patterns are similar in all assemblages. The conserved diversity patterns and ecological structures among sites suggest that the ecological composition of Cambrian Burgess Shale-type communities was relatively stable across wide geographic and temporal scales.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. K. Bambach , A. M. Bush , and D. H. Erwin . 2007. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology 50:122.

J. P Botting . 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: Insights into the early evolutionary history of sponges. Geobios 40:737748.

D. E. G. Briggs , and R. A. Fortey . 2005. Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31:94112.

A. M. Bush , and R. K. Bambach . 2011. Paleoecologic megatrends in marine Metazoa. Annual Review of Earth and Planetary Sciences 39:241269.

J. B. Caron , R. R. Gaines , M. G. Mãngano , M. Streng , and A. C. Daley . 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology 38:811814.

J. B. Caron , R. R. Gaines , C. Aria , M. G. Mãngano , and M. Streng . 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5:3210. doi:10.1038/ncomms4210.

J. B. Caron , and D. A. Jackson . 2006. Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. Palaios 21:451465.

J. B. Caron , and D. A. Jackson . 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258:222256.

S. Clausen , X. G. Hou , J. Bergström , and C. Franzén . 2010. The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 294:133141.

D. Collins , D. E. G. Briggs , and S. Conway Morris . 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science 222:163167.

S Conway Morris . 1993. The fossil record and early evolution of the Metazoa. Nature 361:219225.

S. Conway Morris , and J. S. Peel . 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica 53:137148.

A. C. Daley , and G. E. Budd . 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53:721738.

S. Q. Dornbos , and J. Y. Chen . 2008. Community palaeoecology of the early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms. Palaeogeography, Palaeoclimatology, Palaeoecology 258:200212.

J. A. Dunne , R. J. Williams , N. D. Martinez , R. A. Wood , and D. H. Erwin . 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology 6:e102. doi: 10.1371/journal.pbio.0060102.

T. P. Fletcher , and D. Collins . 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences 35:413436.

T. P. Fletcher , and D. Collins . 2003. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences 40:18231838.

S.E. Gabbott , J. Zalasiewicz , and D. Collins . 2008. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. Journal of the Geological Society 165:307318.

R. R. Gaines , D. E. G. Briggs , P. J. Orr , and P. Van Roy . 2012b. Preservation of giant anomalocaridids in silica-chlorite concretions from the Early Ordovician of Morocco. Palaios 27:317325.

R. R. Gaines , D. E. G. Briggs , and Z. Yuanlong . 2008. Cambrian Burgess Shale–type deposits share a common mode of fossilization. Geology 36:755758.

R. R. Gaines , and M. L. Droser . 2010. The paleoredox setting of Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 297:649661.

R. R. Gaines , E. U. Hammarlund , X. Hou , C. Qi , S. E. Gabbott , Y. Zhao , J. Peng , and D. E. Canfield . 2012a. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences 109:51805184.

D. C. García-Bellido , and D. Collins . 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences 43:721742.

D. C. García-Bellido , and D. Collins . 2007. Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the middle Cambrian Burgess Shale, British Columbia, Canada. Palaeontology 50:693709.

J. Han , D. Shu , Z. Zhang , J. Liu , X. Zhang , and Y. Yao . 2006. Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits. Chinese Science Bulletin 51:24822492.

J. T. Haug , J. B. Caron , and C. Haug . 2013. Demecology and palaeo-eco-devo in the Cambrian — synchronized molting in arthropods from the Burgess Shale. BMC Biology 11:64.

J. T. Haug , G. Mayer , C. Haug , and D. E. G. Briggs . 2012. A carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Current Biology 22:16731675.

D. A. Legg , M. D. Sutton , G. D. Edgecombe , and J. B. Caron . 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B: Biological Sciences 279:46994704.

P. M Novack-Gottshall . 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.

L. J. O’Brien , J. B. Caron , and R. R. Gaines . 2014. Taphonomy and depositional setting of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia. Palaios 29:309324.

L.J. O’Brien , and J. B. Caron . 2012. A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7:e29233.

W. G. Powell , P. A. Johnston , and C. J. Collom . 2003. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 201:249268.

M. L Rosenzweig . 1995. Species diversity in space and time. Cambridge University Press, Cambridge, 436 pp.

J Sprinkle 1976. Classification and phylogeny of “pelmatozoan” echinoderms. Systematic Zoology 25:8391.

J. Sprinkle , and D. Collins . 1998. Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia. Lethaia 31:269282.

H. Van Iten , M. Y. Zhu , and D. Collins . 2002. First report of Sphenothallus Hall, 1847 in the Middle Cambrian. Journal of Paleontology 76:902905.

P. Van Roy , and D. E. G. Briggs . 2011. A giant Ordovician anomalocaridid. Nature 473:510513.

P. Van Roy , P. J. Orr , J. P. Botting , L. A. Muir , J. Vinther , B. Lefebvre , K. E. Hariri , and D. E. G. Briggs . 2010. Ordovician faunas of Burgess Shale type. Nature 465:215218.

J Vannier . 2012. Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem. PLoS ONE 7:e52200. doi: 10.1371/journal.pone.0052200.

S. Villéger , P. M. Novack-Gottshall , and D. Mouillot . 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14:561568.

M. Williams , J. Vannier , L. Corbari , and J. C. Massabuau . 2011. Oxygen as a driver of early arthropod micro-benthos evolution. PLoS ONE 6:e28183. doi: 10.1371/journal.pone.0028183.

X. Zhang , W. Liu , and Y. Zhao . 2008. Cambrian Burgess Shale-type Lagerstätten in South China: Distribution and significance. Gondwana Research 14:255262.

F. Zhao , J. B. Caron , D. J. Bottjer , S. Hu , Z. Yin , and M. Zhu . 2013. Comparative community paleoecology of the early Cambrian (Series 2, Stage 3) Chengjiang biota from China. Paleobiology 40:5069.

F. Zhao , J. B. Caron , S. Hu , and M. Zhu . 2009. Quantitative analysis of taphofacies and paleocommunities in the early Cambrian Chengjiang Lagerstätte. Palaios 24:826839.

F. Zhao , M. Zhu , and S. Hu . 2010. Community structure and composition of the Cambrian Chengjiang biota. Science China Earth Sciences 53:17841799.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 150 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2017. This data will be updated every 24 hours.