Skip to main content
×
Home
    • Aa
    • Aa

Paleoecological and stratigraphic controls on eurypterid Lagerstätten: a model for preservation in the mid-Paleozoic

  • Matthew B. Vrazo (a1), Carlton E. Brett (a1) and Samuel J. Ciurca (a2)
Abstract
Abstract

Recent studies of eurypterid paleoecology suggest that formation of eurypterid Lagerstätten in the mid-Paleozoic of Laurentia was controlled by the presence of an ecological–taphonomic window that recurred predictably in nearshore, marginal environments during transgressions. We tested this hypothesis by performing a high-resolution taxonomic, environmental, and stratigraphic survey and quantitative analysis of all Silurian–Lower Devonian eurypterid-bearing intervals in the Appalachian basin, the most prolific region for eurypterid remains in the world. Canonical correspondence analysis of sedimentological and faunal associations revealed a strong lithologic gradient between groupings of eurypterid genera and associated taxa across the basin, and a significant association of eurypterids with microbialites (thrombolites, stromatolites) and evaporitic structures. Field observations confirmed that, stratigraphically, eurypterids in the basin frequently occur above the microbialite structures and beneath evaporites and other indicators of increased salinity or subaerial exposure. Following interpretation of these features within a sequence stratigraphic framework, we present a preservational model in which (1) eurypterids inhabited nearshore settings following freshening conditions concomitant with minor transgressions, (2) their remains were subsequently buried by storms or microbialite sediment baffling, and (3) subsequent long-term preservation of tissues was facilitated by regression and cyclical shallowing-up successions that promoted hypersalinity and anoxia. In the central and southern region of the basin, where microbial structures and evidence for hypersalinity are less common, a similar pattern of cyclical shallowing-upward deposition within eurypterid-bearing units holds. Thus, eurypterid preservation appears to reflect a combination of ecological preferences and abiotic conditions that promoted inhabitation and eventual preservation within the same setting. This study provides the first quantitative support for a sea level–based control on preservation of eurypterids and adds to the growing body of evidence that suggests that analysis of exceptional preservation in the fossil record benefits from interpretation within a sequence stratigraphic framework.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P.A Allison . 1990. Variation in rates of decay and disarticulation of echinodermata: implications for the application of actualistic data. Palaios 5:432440.

R. K. Barnes 1989. What, if anything, is a brackish-water fauna? Transactions of the Royal Society of Edinburgh (Earth Sciences) 80:235240.

S. J. Braddy 2001. Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a “mass-moult-mate” hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology 172:115132.

C. E. Brett 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597616.

C. E. Brett 1998. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241262.

C. E. Brett , W. M. Goodman , and S. T. LoDuca . 1990. Sequences, cycles, and basin dynamics in the Silurian of the Appalachian foreland basin. Sedimentary Geology 69:191244.

C. E. Brett , P. A. Allison , M. K. DeSantis , W. D. Liddell , and A. Kramer . 2009. Sequence stratigraphy, cyclic facies, and lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 277:933.

G. D. Cody , N. S. Gupta , D. E. G. Briggs , A. L. D. Kilcoyne , R. E. Summons , F. Kenig , R. E. Plotnick , and A. C. Scott . 2011. Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39:255258.

B. Cramer , C. E. Brett , M. J. Melchin , P. Mannik , M. A. Kleffner , P. I. Mclaughlin , D. K. Loydell , A. Muenecke , L. Jeppsson , C. Corradini , F. Brunton , and M. R. Saltzman . 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia 44:185202.

J. M. Dennison , and J. W. Head . 1975. Sealevel variations interpreted from the Appalachian basin Silurian and Devonian. American Journal of Science 275:10891120.

S. L. Dorobek , and J. F. Read . 1986. Sedimentology and basin evolution of the Siluro-Devonian Helderberg Group, Central Appalachians. Journal of Sedimentary Research 56:601613.

J. A. Dunlop 2010. Geological history and phylogeny of Chelicerata. Arthropod Structure and Development 39:124142.

D. Edwards , H. P. Banks , S. J. Ciurca Jr., and R. S. Laub . 2004. New Silurian cooksonias from dolostones of north-eastern North America. Botanical Journal of the Linnean Society 146:399413.

H. R. Feldman , A. W. Archer , E. P. Kvale , C. R. Cunningham , C. G. Maples , and R. R. West . 1993. A tidal model of Carboniferous Konservat-Lagerstaetten formation. Palaios 8:485498.

M. Foote 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.

R. R. Gaines , E. U. Hammarlund , X. Hou , C. Qi , S. E. Gabbott , Y. Zhao , J. Peng , and D. E. Canfield . 2012. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences USA 109:51805184.

M. O. Hill , 1973. Reciprocal averaging: an eigenvector method of ordination. Journal of Ecology 61:237249.

W. Kiessling , and M. Aberhan . 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.

J. Kluessendorf 1994. Predictability of Silurian Fossil-Konservat-Lagerstätten in North America. Lethaia 27:337344.

J. Lamsdell , D. Briggs , H. Liu , B. Witzke , and R. McKay . 2015. The oldest described eurypterid: a giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstatte of Iowa. BMC Evolutionary Biology 15:169.

J. C. Lamsdell , and S. J. Braddy . 2010. Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters 6:265269.

N. Noffke , and S. M. Awramik . 2013. Stromatolites and MISS—Differences between relatives. GSA Today 23:49.

M. E. Patzkowsky , and S. M. Holland . 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.

M.-E. Perga 2011. Taphonomic and early diagenetic effects on the C and N stable isotope composition of cladoceran remains: implications for paleoecological studies. Journal of Paleolimnology 46:203213.

L. Schröer , T. R. A. Vandenbroucke , O. Hints , T. Steeman , J. Verniers , C. Brett , B. D. Cramer , and P. I. McLaughlin . 2016. A Late Ordovician age for the Whirlpool and Power Glen Formation, New York. Canadian Journal of Earth Sciences 53:739747.

C. Simpson , and P. G. Harnik . 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.

C. A. Stott , O. E. Tetlie , J. B. Simon , G. S. Nowlan , P. M. Glasser , and M. G. Devereux . 2005. A new Eurypterid (Chelicerata) from the Upper Ordovician of Manitoulin Island, Ontario, Canada. Journal of Paleontology 79:11661174.

C. K. Swartz , and F. M. Swartz . 1931. Early Silurian formations of southeastern Pennsylvania. Geological Society of America Bulletin 42:621662.

C. J. Ter Braak 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:11671179.

O. E. Tetlie 2007. Distribution and dispersal history of Eurypterida (Chelicerata). Palaeogeography, Palaeoclimatology, Palaeoecology 252:557574.

O. E. Tetlie , and M. Poschmann . 2008. Phylogeny and palaeoecology of the Adelophthalmoidea (arthropoda; chelicerata; eurypterida). Journal of Systematic Palaeontology 6:237249.

O. E. Tetlie , D. S. Brandt , and D. E. G. Briggs . 2008. Ecdysis in sea scorpions (Chelicerata: Eurypterida). Palaeogeography, Palaeoclimatology, Palaeoecology 265:182194.

J. Vannier , S. Q. Wang , and M. Coen . 2001. Leperditicopid arthropods (Ordovician–Late Devonian): functional morphology and ecological range. Journal of Paleontology 75:7595.

M. B. Vrazo , and S. J. Braddy . 2011. Testing the “mass-moult-mate” hypothesis of eurypterid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 311:6373.

M. B. Vrazo , J. M. Trop , and C. E. Brett . 2014. A new eurypterid Lagerstätte from the upper Silurian of Pennsylvania. Palaios 29:431448.

M. B. Vrazo , C. E. Brett , and S. J. Ciurca Jr. 2016. Buried or brined? Eurypterids and evaporites in the Silurian Appalachian basin. Palaeogeography Palaeoclimatology Palaeoecology 444:4859.

M. Webster , R. R. Gaines , and N. C. Hughes . 2008. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 264:100122.

G. A. Young , D. M. Rudkin , E. P. Dobrzanski , S. P. Robson , and G. S. Nowlan . 2007. Exceptionally preserved Late Ordovician biotas from Manitoba, Canada. Geology 35:883886.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 161 *
Loading metrics...

* Views captured on Cambridge Core between 4th May 2017 - 24th May 2017. This data will be updated every 24 hours.