Skip to main content Accessibility help
×
Home

Phylogeny, ancestors, and anagenesis in the hominin fossil record

  • Caroline Parins-Fukuchi (a1), Elliot Greiner (a2), Laura M. MacLatchy (a3) and Daniel C. Fisher (a4)

Abstract

Probabilistic approaches to phylogenetic inference have recently gained traction in paleontological studies. Because they directly model processes of evolutionary change, probabilistic methods facilitate a deeper assessment of variability in evolutionary patterns by weighing evidence for competing models. Although phylogenetic methods used in paleontological studies have generally assumed that evolution proceeds by splitting cladogenesis, extensions to previous models help explore the potential for morphological and temporal data to provide differential support for contrasting modes of evolutionary divergence. Recent methodological developments have integrated ancestral relationships into probabilistic phylogenetic methods. These new approaches rely on parameter-rich models and sophisticated inferential methods, potentially obscuring the respective contributions of data and models. In this study, we describe a simple likelihoodist approach that combines probabilistic models of morphological evolution and fossil preservation to reconstruct both cladogenetic and anagenetic relationships. By applying this approach to a data set of fossil hominins, we demonstrate the capability of existing models to unveil evidence for anagenesis presented by morphological and temporal data. This evidence was previously recognized by qualitative assessments, but largely ignored by quantitative phylogenetic analyses. For example, we find support for directly ancestral relationships in multiple lineages: Sahelanthropus is ancestral to later hominins; Australopithecus anamensis is ancestral to Australopithecus afarensis; Australopithecus garhi is ancestral to Homo; Homo antecessor is ancestral to Homo heidelbergensis, which in turn is ancestral to both Homo sapiens and Homo neanderthalensis. By accommodating direct ancestry in phylogenetics, quantitative results align more closely with previous qualitative expectations.

Copyright

Footnotes

Hide All

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.6d2h8bp; and the GitHub Digital Repository: https://github.com/carolinetomo/mandos and https://github.com/carolinetomo/hominin_anagenesis

Footnotes

References

Hide All
Asfaw, B., White, T., Lovejoy, O., Latimer, B., Simpson, S., and Suwa, G.. 1999. Australopithecus garhi: a new species of early hominid from Ethiopia. Science 284:629635.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.. 2011. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews 86:900927.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.. 2013. Identifying anagenesis and cladogenesis in the fossil record. Proceedings of the National Academy of Sciences USA 110:E2946E2946.
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.
Bapst, D. W., and Hopkins, M. J.. 2017. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology 43:4967.
Bermúdez de Castro, J. M., Arsuaga, J. L., Carbonell, E., Rosas, A., Martínez, I., and Mosquera, M.. 1997. A hominid from the lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans. Science 276:13921395.
Brown, J. W., Parins-Fukuchi, C., Stull, G. W., Vargas, O. M., and Smith, S. A.. 2017. Bayesian and likelihood phylogenetic reconstructions of morphological traits are not discordant when taking uncertainty into consideration: a comment on Puttick et al. Proceedings of the Royal Society of London B 284:20170986.
Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., Beauvilain, A., Blondel, C., Bocherens, H., Boisserie, J.-R., De Bonis, L., Coppens, Y., Dejax, J., Denys, C., Duringer, P., Eisenmann, V., Fanone, G., Fronty, P., Geraads, D., Lehmann, T., Lihoreau, F., Louchart, A., Mahamat, A., Merceron, G., Mouchelin, G., Otero, O., Campomanes, P. P., De Leon, M. P., Rage, J.-C., Sapanet, M., Schuster, M., Sudre, J., Tassy, P., Valentin, X., Vignaud, P., Viriot, L., Zazzo, A., and Zollikofer, C.. 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145151.
Buck, L. T., and Stringer, C. B.. 2014. Homo heidelbergensis. Current Biology 24:R214R215.
Chamberlain, A., and Wood, B.. 1987. Early hominid phylogeny. Journal of Human Evolution 16:119133.
Collard, M., and Wood, B.. 2000. How reliable are human phylogenetic hypotheses? Proceedings of the National Academy of Sciences USA 97:50035006.
Darwin, C. 1871. The descent of man, and selection in relation to sex, 1st ed. John Murray, London.
Delson, E., Eldredge, N., and Tattersall, I.. 1977. Reconstruction of hominid phylogeny: a testable framework based on cladistic analysis. Journal of Human Evolution 6:263278.
Dembo, M., Matzke, N. J., Mooers, A. Ø., and Collard, M.. 2015. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proceedings of the Royal Society of London B 282:20150943.
Dembo, M., Radovčić, D., Garvin, H. M., Laird, M. F., Schroeder, L., Scott, J. E., Brophy, J., Ackermann, R. R., Musiba, C. M., de Ruiter, D. J., Mooers, A. Ø., and Collard, M.. 2016. The evolutionary relationships and age of Homo naledi: an assessment using dated Bayesian phylogenetic methods. Journal of Human Evolution 97:1726.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368376.
Felsenstein, J. 1988. Phylogenies and quantitative characters. Annual Review of Ecology and Systematics 19:445471.
Fisher, D. C. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. Pp. 133171 in Grande, L. and Rieppel, O., eds. Interpreting the hierarchy of nature: from systematic patterns to evolutionary process theories. Academic Press, New York.
Fisher, D. C. 2008. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annual Review of Ecology, Evolution, and Systematics 39:365385.
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology 22:141151.
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.
Fox, D. L., Fisher, D. C., and Leighton, L. R.. 1999. Reconstructing phylogeny with and without temporal data. Science 284:18161819.
Futuyma, D. J. 1987. On the role of species in anagenesis. American Naturalist 130:465473.
Gavryushkina, A., Welch, D., Stadler, T., and Drummond, A. J.. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10:e1003919.
Gavryushkina, A., Heath, T. A., Ksepka, D. T., Stadler, T., Welch, D., and Drummond, A. J.. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology 66:5773.
Gingerich, P. D. 1979. Stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. Pp. 4177 in Cracraft, J. and Eldredge, N., eds. Phylogenetic analysis and paleontology. Columbia University Press, New York.
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology 11:2741.
Goloboff, P. A., Mattoni, C. I., and Quinteros, A. S.. 2006. Continuous characters analyzed as such. Cladistics 22:589601.
Goloboff, P. A., Torres, A., and Arias, J. S.. 2017. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 281:20141278.
Gould, S. J. 1980. Is a new and general theory of evolution emerging? Paleobiology 6:119130.
Gould, S. J., and Eldredge, N.. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.
Guy, F., Lieberman, D. E., Pilbeam, D., de Leon, M. P., Likius, A., Mackaye, H. T., Vignaud, P., Zollikofer, C., and Brunet, M.. 2005. Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium. Proceedings of the National Academy of Sciences USA 102:1883618841.
Heath, T. A., Huelsenbeck, J. P., and Stadler, T.. 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences USA 111:E295766.
Huelsenbeck, J. P., and Rannala, B.. 1997. Maximum likelihood estimation of phylogeny using stratigraphic data. Paleobiology 23:174180.
Irish, J. D., Guatelli-Steinberg, D., Legge, S. S., de Ruiter, D. J., and Berger, L. R.. 2013. Dental morphology and the phylogenetic “place” of Australopithecus sediba. Science 340:12330621233062.
Jones, E., Oliphant, T., and Peterson, P.. 2001. SciPy: open source scientific tools for Python. http://www.scipy.org, accessed 23 September 2018.
Kimbel, W. H., Lockwood, C. A., Ward, C. V., Leakey, M. G., Rak, Y., and Johanson, D. C.. 2006. Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. Journal of Human Evolution 51:134152.
Leakey, M. G., Feibel, C. S., McDougall, I., and Walker, A.. 1995. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376:565571.
Levinton, J. S. 2001. Genetics, paleontology, and macroevolution. Cambridge University Press, Cambridge.
Levinton, J. S., and Chris, M. S.. 1980. A critique of the punctuated equilibria model and implications for the detection of speciation in the fossil record. Systematic Biology 29:130142.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913925.
Lewis, P. O., Chen, M.-H., Kuo, L., Lewis, L. A., Fučíková, K., Neupane, S., Wang, Y.-B., and Shi, D.. 2016. Estimating Bayesian phylogenetic information content. Systematic Biology 65:10091023.
Luo, A., Duchene, D., Zhang, C., Zhu, C. D., and Ho, S.. 2018. A simulation-based evaluation of total-evidence dating under the fossilized birth-death process. BioRxiv. doi: 10.1101/436303.
MacLatchy, L. M., Desilva, J., Sanders, W. J., and Wood, B.. 2010. Hominini. Pp. 471542 in Sanders, W. J. and Werdelin, L., eds. Cenozoic mammals of Africa. University of California Press, Oakland.
MacLeod, N. 1991. Punctuated anagenesis and the importance of stratigraphy to paleobiology. Paleobiology 17:167188.
Mounier, A., Marchal, F., and Condemi, S.. 2009. Is Homo heidelbergensis a distinct species? New insight on the Mauer mandible. Journal of Human Evolution 56:219246.
Parins-Fukuchi, C. 2017. Use of continuous traits can improve morphological phylogenetics. Systematic Biology 67:328339.
Puttick, M. N., O'Reilly, J. E., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L. A., Tarver, J. E., Pisani, D., and Donoghue, P. C. J.. 2017. Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society of London B 284:20162290.
Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.
Rightmire, G. P. 1998. Human evolution in the Middle Pleistocene: the role of Homo heidelbergensis. Evolutionary Anthropology 6:218227.
Rosas, A., and Bermúdez De Castro, J. M.. 1998. The Mauer mandible and the evolutionary significance of Homo heidelbergensis. Geobios 31:687697.
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.
Smith, A. B. 1994. Systematics and the fossil record. Blackwell Science, Oxford.
Smith, A. B. 2000. Stratigraphy in phylogeny reconstruction. Journal of Paleontology 74:763766.
Soul, L. C., and Friedman, M.. 2017. Bias in phylogenetic measurements of extinction and a case study of end-Permian tetrapods. Palaeontology 60:169185.
Stadler, T. 2010. Sampling-through-time in birth–death trees. Journal of Theoretical Biology 267:396404.
Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J., and Heath, T. A.. 2018. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation concepts. Journal of Theoretical Biology 447:4155.
Stanley, S. M. 1998. Macroevolution: pattern and process, 2nd ed. Johns Hopkins University Press, Baltimore, Md.
Strait, D. S. 1999. Cladistics and early hominid phylogeny. Science 285:1209.
Strait, D. S., Grine, F. E., and Moniz, M. A.. 1997. A reappraisal of early hominid phylogeny. Journal of Human Evolution 32:1782.
Stringer, C. 2012. The status of Homo heidelbergensis (Schoetensack 1908). Evolutionary Anthropology 21:101107.
Strotz, L. C., and Allen, A. P.. 2013. Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence. Proceedings of the National Academy of Sciences USA 110:29042909.
Wagner, P. J. 1998. A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24:430449.
Ward, C. V., Leakey, M. G., and Walker, A.. 2001. Morphology of Australopithecus anamensis from Kanapoi and Allia Bay, Kenya. Journal of Human Evolution 41:255368.
White, T. 2003. Paleoanthropology. Early hominids—diversity or distortion? Science 299:19941997.
Wright, A. M., and Hillis, D. M.. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210.
Yang, Z., and Zhu, T.. 2018. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees. Proceedings of the National Academy of Sciences USA 115:18541859.
Yang, Z., Kumar, S., and Nei, M.. 1995. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:16411650.
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., and Ronquist, F.. 2016. Total-evidence dating under the fossilized birth-death process. Systematic Biology 65:228249.
Zollikofer, C. P. E., Ponce de León, M. S., Lieberman, D. E., Guy, F., Pilbeam, D., Likius, A., Mackaye, H. T., Vignaud, P., and Brunet, M.. 2005. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434:755759.

Phylogeny, ancestors, and anagenesis in the hominin fossil record

  • Caroline Parins-Fukuchi (a1), Elliot Greiner (a2), Laura M. MacLatchy (a3) and Daniel C. Fisher (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed