Skip to main content Accessibility help
×
Home

Prey fractionation in the Archaeocyatha and its implication for the ecology of the first animal reef systems

  • Jonathan B. Antcliffe (a1), William Jessop (a2) and Allison C. Daley (a1)

Abstract

Archaeocyaths are the most abundant sponges from the Cambrian period, having formed the first animal reef communities more than 500 million years ago. The Archaeocyatha are index fossils for correlating rocks of similar ages globally because of their abundance, extensive geographic distribution, detailed anatomy, and well-established taxonomy. Their ecological significance remains incompletely explored, yet they are known to have strongly competitively interacted, unlike modern sponges. This study examines the feeding ecology of the fossil remains of Siberian archaeocyath assemblages. As suspension feeders, archaeocyaths filtered plankton from the water column through pores in their outer wall. Here we outline a new method to estimate the limit on the upper size of plankton that could be consumed by an archaeocyath during life. The archaeocyaths examined were predominantly feeding on nanoplankton and microplankton such as phytoplankton and protozooplankton. Size-frequency distributions of pore sizes from six different Siberian archaeocyath assemblages, ranging from Tommotian to Botoman in age, reveal significantly different upper limits to the prey consumed at each locality. Some of the assemblages contain specimens that could have fed on larger organisms extending into the mesoplankton, including micro-invertebrates as a possible food resource. These results show that during the establishment of the first animal reef systems, prey partitioning was established as a way of reducing competition. This method has applicability for understanding the construction and the functioning of the first reef systems, as well as helping to understand modern reef systems and their development though time and space.

Copyright

Footnotes

Hide All

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.0r17c1m

Footnotes

References

Hide All
Antcliffe, J. B. 2013. Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56:917925.
Antcliffe, J. B. 2015. The oldest compelling evidence for sponges is still early Cambrian in age—reply to Love and Summons (2015). Palaeontology 58:11371139.
Antcliffe, J. B., Callow, R. H., and Brasier, M. D.. 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews 89:9721004.
Balsam, W. L., and Vogel, S.. 1973. Water movement in archaeocyathids: evidence and implications of passive flow in models. Journal of Paleontology 47:979984.
Bannister, R., Battershill, C., and De Nys, R.. 2012. Suspended sediment grain size and mineralogy across the continental shelf of the Great Barrier Reef: impacts on the physiology of a coral reef sponge. Continental Shelf Research 32:8695.
Bell, J. J., McGrath, E., Biggerstaff, A., Bates, T., Bennett, H., Marlow, J., and Shaffer, M.. 2015. Sediment impacts on marine sponges. Marine Pollution Bulletin 94(1–2):513.
Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley.
Brasier, M. 1976. Early Cambrian intergrowths of archaeocyathids, Renalcis, and pseudostromatolites from South Australia. Palaeontology 19:223245.
Brasier, M. 1991. Nutrient flux and the evolutionary explosion across the Precambrian-Cambrian boundary interval. Historical Biology 5(2–4):8593.
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Y., and Zhuravlev, A. Y.. 1994. Multiple Delta-13c excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22:455458.
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology 23:247262.
Carrera, M. G., and Botting, J. P.. 2008. Evolutionary history of Cambrian spiculate sponges: implications for the Cambrian evolutionary fauna. Palaios 23:124138.
Conover, R. J. 1981. Nutritional strategies for feeding on small suspended particles. Pp. 363395 in Longhurst, A. R., ed. Analysis of Marine Ecosystems. Academic, New York.
Cordie, D. R., and Dornbos, S. Q.. 2019. Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths. Paleobiology 45:331346.
Cordie, D. R., Dornbos, S. Q., Marenco, P. J., Oji, T., and Gonchigdorj, S.. 2019. Depauperate skeletonized reef-dwelling fauna of the early Cambrian: insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 514:206221.
Daley, A. C., Antcliffe, J. B., Drage, H. B., and Pates, S.. 2018. Early fossil record of Euarthropoda and the Cambrian explosion. Proceedings of the National Academy of Sciences USA 115:53235331.
Debrenne, F. 2007. Lower Cambrian archaeocyathan bioconstructions. Comptes Rendus Palevol 6(1–2):519.
Debrenne, F., and Vacelet, J.. 1984. Archaeocyatha: is the sponge model consistent with their structural organisation? Palaeontographica Americana 54:358369.
Debrenne, F., and Zhuravlev, A. Y.. 1997. Cambrian food web: a brief review. Geobios 30:181188.
Debrenne, F., Zhuravlev, A. Y., and Rozanov, A. Y.. 1989. Pravilʹnye arkheot︠s︡iaty [Regular archaeocyaths]. Trudy Paleontologicheskiy Institut Akademiya Nauk, Moscow.
Debrenne, F., Zhuravlev, A. Y., and Kruse, P. D.. 2012. Part E (revised), vol. 4, chap. 18: General features of the Archaeocyatha. Treatise Online 38:1102.
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. Proceedings of the National Academy of Sciences USA 49:298302.
Fernandez Araoz, N. C. 1991. Individual biomass, based on body measures, of copepod species considered as main forage items for fishes of the Argentine shelf. Oceanologica Acta 14:575580.
Gandin, A., and Debrenne, F.. 2010. Distribution of the archaeocyath–calcimicrobial bioconstructions on the Early Cambrian shelves. Palaeoworld 19:222241.
Gili, J.-M., and Coma, R.. 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology and Evolution 13:316321.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.. 2012. The geologic time scale 2012. Elsevier, Amsterdam.
Hammer, Ø., and Harper, D. A.. 2008. Paleontological data analysis. Wiley, Hoboken, N.J.
James, N. P., and Debrenne, F.. 1980. Lower Cambrian bioherms: pioneer reefs of the Phanerozoic. Acta Palaeontologica Polonica 25(3–4):655668.
James, N. P., and Gravestock, D. I.. 1990. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia 1. Sedimentology 37:455480.
Kahn, A. S., Chu, J. W., and Leys, S. P.. 2018. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Scientific Reports 8:756.
Khomentovskiy, V., and Repina, L.. 1965. The Lower Cambrian of the stratotype section of Siberia. Institut Geologii i Geofiziki 14. Akademia Nauk SSSR Sibirskoe Otdelenie, Moscow.
Kiessling, W. 2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology, Evolution, and Systematics 40:173192.
Kruse, P. D. 1982. Archaeocyathan biostratigraphy of the Gnalta Group at Mt. Wright, New South Wales. Palaeontographica Abteilung A 177:129212.
Kruse, P. D. 1990. Are archaeocyaths sponges, or are sponges archaeocyaths. In The Evolution of a late Precambrian–early Palaeozoic rift complex: the Adelaide Geosyncline. Geological Society of Australia Special Publication 16:310323.
Kruse, P. D., and Moreno-Eiris, E.. 2014. Archaeocyaths of the White Point Conglomerate, Kangaroo Island, South Australia. Alcheringa 38(1):164.
Kruse, P. D., Zhuravlev, A. Y., and James, N. P.. 1995. Primordial metazoan-calcimicrobial reefs: Tommotian (early Cambrian) of the Siberian platform. Palaios 10:291321.
Landing, E., Geyer, G., Brasier, M. D., and Bowring, S. A.. 2013. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123:133172.
Landing, E., Antcliffe, J. B., Geyer, G., Kouchinsky, A., Bowser, S. S., and Andreas, A.. 2018. Early evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval). Earth Science Reviews 178:105135.
Lesser, M. P., Witman, J. D., and Sebnens, K.. 1994. Effects of flow and seston availability on scope for growth of benthic suspension-feeding invertebrates from the Gulf of Maine. Biological Bulletin 187:319335.
Leys, S. P., and Eerkes-Medrano, D. I.. 2006. Feeding in a calcareous sponge: particle uptake by pseudopodia. Biological Bulletin 211:157171.
Maas, A., Braun, A., Dong, X.-P., Donoghue, P. C., Müller, K. J., Olempska, E., Repetski, J. E., Siveter, D. J., Stein, M., and Waloszek, D.. 2006. The “Orsten”—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15:266282.
McKee, E. H. 1963. Ontogenetic stages of the archaeocyathid Ethmophyllum whitneyi Meek. Journal of Paleontology 37:287293.
Muscente, A., Michel, F. M., Dale, J. G., and Xiao, S.. 2015. Assessing the veracity of Precambrian “sponge” fossils using in situ nanoscale analytical techniques. Precambrian Research 263:142156.
Nettersheim, B. J., Brocks, J. J., Schwelm, A., Hope, J. M., Not, F., Lomas, M., Schmidt, C., Schiebel, R., Nowack, E. C. M., De Deckker, P., Pawlowski, J., Bowser, S. S., Bobrovskiy, I., Zonneveld, K., Kucera, M., Stuhr, M., and Hallmann, C.. 2019. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nature Ecology & Evolution 3:577581.
Omori, M., and Ikeda, T.. 1984. Methods in marine zooplankton ecology. Wiley, New York.
Peters, S. E., and Gaines, R. R.. 2012. Formation of the “Great Unconformity”as a trigger for the Cambrian explosion. Nature 484:363.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.
Reiswig, H. 1973. Population dynamics of three Jamaican Demospongiae. Bulletin of Marine Science 23:191226.
Reiswig, H. M. 1971. Particle feeding in natural populations of three marine demosponges. The Biological Bulletin 141:568591.
Ribes, M., Coma, R., and Gili, J.-M.. 1999. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series 176:179190.
Riisgaard, H. U., and Larsen, P. S.. 1995. Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biological Reviews 70:67106.
Riisgård, H. U., and Larsen, P. S.. 2010. Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecology Progress Series 418:255293.
Rowland, S. M. 2001. Archaeocyaths—a history of phylogenetic interpretation. Journal of Paleontology 75:10651078.
Rowland, S. M., and Gangloff, R. A.. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3:111135.
Rozanov, A. Y., Khomentovskiy, V., Shabanov, Y. Y., Karlova, G., Varlamov, A., Luchinina, V., Demidenko, Y. E., Parkhaev, P. Y., Korovnikov, I., and Skorlotova, N.. 2008. To the problem of stage subdivision of the Lower Cambrian. Stratigraphy and Geological Correlation 16:119.
Savarese, M. 1992. Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications. Paleobiology 18:464480.
Senowbari-Daryan, B., and García-Bellido, D. C.. 2002. Fossil “Sphinctozoa”: chambered sponges (polyphyletic). Pp. 15111538 in Hooper, J. N. A., Van Soest, R. W. M., and Willenz, P., eds. Systema porifera. Springer, Boston.
Servais, T., Owen, A. W., Harper, D. A., Kröger, B., and Munnecke, A.. 2010. The great Ordovician biodiversification event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.
Shea, K., and Chesson, P.. 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution 17:170176.
Sieburth, J. M., Smetacek, V., and Lenz, J.. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions 1. Limnology and Oceanography 23:12561263.
Skorlotova, N. A. 2013. New archaeocyatha from the Atdabanian Stage of the Siberian Platform. Paleontologicheskiy Zhurnal 47:555561.
Surge, D. M., Savarese, M., Dodd, J. Robert, and Lohmann, K. C.. 1997. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans. Geology 25:503506.
Vacelet, J. 1977. Une nouvelle relique du Secondaire: un représentant actuel des éponges fossiles Sphinctozoaires. Comptes rendus de l'Académie des Sciences 285:509511.
Vacelet, J. 2006. New carnivorous sponges (Porifera, Poecilosclerida) collected from manned submersibles in the deep Pacific. Zoological Journal of the Linnean Society 148:553584.
Vacelet, J., and Boury-Esnault, N.. 1995. Carnivorous sponges. Nature 373:333335.
Visser, A. W., and Jonsson, P. R.. 2000. On the reorientation of non-spherical prey particles in a feeding current. Journal of Plankton Research 22:761777.
Wolfe, J. M., Daley, A. C., Legg, D. A., and Edgecombe, G. D.. 2016. Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews 160:43110.
Wood, R. 1999. Reef evolution. Oxford University Press, New York.
Wood, R., Zhuravlev, A. Y., and Debrenne, F.. 1992. Functional biology and ecology of Archaeocyatha. Palaios 7:131156.
Wood, R., Zhuravlev, A. Y., and Chimed-Tseren, A.. 1993. The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: implications for early metazoan reef evolution. Sedimentology 40:829858.
Wörheide, G., and Reitner, J.. 1996. “Living fossil” sphinctozoan coralline sponge colonies in shallow water caves of the Osprey Reef (Coral Sea) and the Astrolabe Reefs (Fiji Islands). Pp. 145148 in Reitner, J., Neuweiler, F., and Gunkel, F., eds. Global and regional controls on biogenic sedimentation, Vol. 1. Reef evolution. Research reports. Geologisch-Paläontologisches Institut der Georg-August-Universität, Göttingen, Germany.
Wulff, J. 2012. Ecological interactions and the distribution, abundance, and diversity of sponges. Advances in Marine Biology 61:273344. Elsevier, Amsterdam.
Wulff, J. L. 2006. Ecological interactions of marine sponges. Canadian Journal of Zoology 84:146166.
Zhang, X.-g., Siveter, D. J., Waloszek, D., and Maas, A.. 2007. An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature 449:595.
Zhang, X.-g., Maas, A., Haug, J. T., Siveter, D. J., and Waloszek, D.. 2010. A eucrustacean metanauplius from the Lower Cambrian. Current Biology 20:10751079.
Zhao, F., Hu, S., Caron, J.-B., Zhu, M., Yin, Z., and Lu, M.. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 346:5465.
Zhuravlev, A. Y., Naimark, E. B., and Wood, R. A.. 2015. Controls on the diversity and structure of earliest metazoan communities: early Cambrian reefs from Siberia. Earth Science Reviews 147:1829.

Prey fractionation in the Archaeocyatha and its implication for the ecology of the first animal reef systems

  • Jonathan B. Antcliffe (a1), William Jessop (a2) and Allison C. Daley (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.