Skip to main content
×
Home
    • Aa
    • Aa

Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction

  • Ádám T. Kocsis (a1), Wolfgang Kiessling (a2) and József Pálfy (a1)
Abstract

Within a ∼60-Myr interval in the Late Triassic to Early Jurassic, a major mass extinction took place at the end of Triassic, and several biotic and environmental events of lesser magnitude have been recognized. Climate warming, ocean acidification, and a biocalcification crisis figure prominently in scenarios for the end-Triassic event and have been also suggested for the early Toarcian. Radiolarians, as the most abundant silica-secreting marine microfossils of the time, provide a control group against marine calcareous taxa in testing selectivity and responses to changing environmental parameters. We analyzed the origination and extinction rates of radiolarians, using data from the Paleobiology Database and employing sampling standardization, the recently developed gap-filler equations and an improved stratigraphic resolution at the substage level. The major end-Triassic event is well-supported by a late Rhaetian peak in extinction rates. Because calcifying and siliceous organisms appear similarly affected, we consider global warming a more likely proximate trigger of the extinctions than ocean acidification. The previously reported smaller events of radiolarian turnover fail to register above background levels in our analyses. The apparent early Norian extinction peak is not significant compared to the long-term trajectory, and is probably a sampling artifact. The Toarcian Oceanic Anoxic Event, previously also thought to have caused a significant radiolarian turnover, did not significantly affect the group. Radiolarian diversity history appears unique and complexly forced, as its trajectory parallels major calcareous fossil groups at some events and deviates at others.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Aberhan , and T. K. Baumiller 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.

J. Alroy 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:11,53611,542.

J. Alroy 2010a. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.

J. Alroy 2010b. The shifting balance of diversity among major marine animal groups. Science 329:11911194.

J. Alroy , C. R. Marshall , R. K. Bambach , K. Bezusko , M. Foote , F. T. Fürsich , T. A. Hansen , S. M. Holland , L. C. Ivanyi , D. Jablonski , D. K. Jacobs , D. C. Jones , M. A. Kosnik , S. Lidgard , S. Low , A. I. Miller , P. M. Novack-Gottshall , T. D. Olszewski , M. E. Patzkowsky , D. M. Raup , K. Roy , J. J. J. Sepkoski , M. G. Sommers , P. J. Wagner , and A. Webber 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.

O. R. Anderson , P. Bennett , and M. Bryan 1989. Experimental and observational studies of radiolarian physiological ecology. 3. Effects of temperature, salinity and light intensity on the growth and survival of Spongaster tetras tetras maintained in laboratory culture. Marine Micropaleontology 14:275282.

O. R. Anderson , M. Bryan , and P. Bennett 1990. Experimental and observational studies of radiolarian physiological ecology. 4. Factors determining the distribution and survival of Didymocyrtis tetrathalamus tetrathalamus with implications for paleoecological interpretations. Marine Micropaleontology 16:155167.

T. R. Bailey , Y. Rosenthal , J. M. McArthur , B. van de Schootbrugge , and M. F. Thrilwall 2003. Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters 212:302320.

R. K. Bambach , A. H. Knoll , and S. C. Wang 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.

D. J. Beerling , and R. A. Berner 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical Cycles 16. doi: 10.1029/2001GB001637.

P. Bown , J. Lees , and J. Young 2004. Calcareous nannoplankton evolution and diversity through time. Pp. 481508in H. Thierstein , and J. Young , eds. Coccolithophores. Springer, Berlin.

E. S. Carter , and R. S. Hori 2005. Global correlation of the radiolarian faunal change across the Triassic–Jurassic boundary. Canadian Journal of Earth Sciences 42:777790.

E. S. Carter , Š. Goričan , J. Guex , L. O'Dogherty , P. De Wever , P. Dumitrica , R. S. Hori , A. Matsuoka , and P. A. Whalen 2010. Global radiolarian zonation for the Pliensbachian, Toarcian and Aalenian. Palaeogeography, Palaeoclimatology, Palaeoecology 297:401419.

P. De Wever , L. O'Dogherty , and Š. Goričan 2006. The plankton turnover at the Permo-Triassic boundary, emphasis on radiolarians. Eclogae Geolocicae Helvetiae 99 (Supp. 1):S49S62.

J. Erbacher , and J. Thurow 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology 30 (1–3):139158.

M. Foote 2000. Origination and extinction components of taxonomic diversity: general problems. In D. H. Erwin and Scott L. Wing , eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):74102.

M. Foote 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.

F. M. Gradstein , J. G. Ogg , M. Schmitz , and G. M. Ogg 2012. The geologic time scale 2012. Elsevier, Boston.

S. E. Greene , R. C. Martindale , K. A. Ritterbush , D. J. Bottjer , F. A. Corsetti , and W. M. Berelson 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Science Reviews 113:7293.

M. Hautmann , M. J. Benton , and A. Tomašových 2008. Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch für Geologie und Paläontologie 249:119127.

R. S. Hori 1997. The Toarcian radiolarian event in bedded cherts from southwestern Japan. Marine Micropaleontology 30:159169.

B. Hönisch , A. Ridgwell , D. N. Schmidt , E. Thomas , S. J. Gibbs , A. Sluijs , R. Zeebe , L. Kump , R. C. Martindale , S. E. Greene , W. Kiessling , J. Ries , J. C. Zachos , D. L. Royer , S. Barker , T. M. J. Marchitto , R. Moyer , C. Pelejero , P. Ziveri , G. L. Foster , and B. Williams 2012. The geological record of ocean acidification. Science 335:10581063.

H. C. Jenkyns 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11(3):Q03004. doi: 10.1029/2009GC002788.

W. Kiessling 1999. Late Jurassic radiolarians from the Antarctic Peninsula. Micropaleontology 45 (Suppl. 1):196.

W. Kiessling 2005. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410413.

W. Kiessling , and M. Aberhan 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.

W. Kiessling , and T. Danelian 2011. Trajectories of Late Permian–Jurassic radiolarian extinction rates: no evidence for an end-Triassic mass extinction. Fossil Record 14:95101.

W. Kiessling , and C. Simpson 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.

L. M. Longridge , E. S. Carter , P. L. Smith , and H. W. Tipper 2007. Early Hettangian ammonites and radiolarians from the Queen Charlotte Islands, British Columbia and their bearing on the definition of the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:142169.

A. Matsuoka 2007. Living radiolarian feeding mechanisms: new light on past marine ecosystems. Swiss Journal of Geosciences 100:273279.

A. Matsuoka , and O. R. Anderson 1992. Experimental and observational studies of radiolarian physiological ecology. 5. Temperature and salinity tolerance of Dictyocoryne truncatum. Marine Micropaleontology 19:299313.

J. C. McElwain , D. J. Beerling , and F. I. Woodward 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:13861390.

M. L. McKinney , and C. W. Oyen 1989. Causation and nonrandomness in biological and geological time series; temperature as a proximal control of extinction and diversity. Palaios 4:315.

L. O'Dogherty , E. S. Carter , P. Dumitrica , Š. Goričan , P. De Wever , A. N. Bandini , P. O. Baumgartner , and A. Matsuoka 2009b. Catalogue of Mesozoic radiolarian genera, Part 2. Jurassic–Cretaceous. Geodiversitas 31:271356.

K. Ogane , A. Tuji , N. Suzuki , T. Kurihara , and A. Matsuoka 2009. First application of PDMPO to examine silicification in polycystine Radiolaria. Plankton and Benthos Research 4:8994.

C. Parmesan 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637669.

N. Pike 2011. Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution 2:278282.

M. Ruhl , and W. M. Kürschner 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition. Geology 39:431434.

P. M. Sadler 2004. Quantitative biostratigraphy—achieving finer resolution in global correlation. Annual Review of Earth and Planetary Sciences 32:187213.

M. Steinthorsdottir , A. J. Jeram , and J. C. McElwain 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 308:418432.

A. O. Tatters , M. Y. Roleda , A. Schnetzer , F. Fu , C. L. Hurd , P. W. Boyd , D. A. Caron , A. A. Y. Lie , L. J. Hoffmann , and D. A. Hutchins 2013. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society of London B 368. doi: 10.1098/rstb.2012.0437.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 303 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th September 2017. This data will be updated every 24 hours.