Skip to main content Accessibility help

The relationship between diet and body mass in terrestrial mammals

  • Silvia Pineda-Munoz (a1), Alistair R. Evans (a2) and John Alroy (a1)

Diet and body mass are highly important factors in mammalian ecology, and they have also proven to be powerful paleoecological indicators. Our previous research has proposed a new classification scheme for mammals with more dietary divisions that emphasizes the primary resource in a given diet. We analyzed a database summarizing the dietary preferences of 139 species of marsupial and placental terrestrial mammals (including 14 orders) and their average body masses in order to explore whether this new classification better highlights ecomorphological differences between species. Additionally, the dietary diversity of every species in the data set was quantified by applying the inverse Simpson index to stomach content percentages. We observed a decrease in maximum dietary diversity with increasing body mass. Having lower requirements for energy and nutrients per unit of body weight or ecological advantages such as larger home ranges allows larger mammals to feed on less nutritive feeding resources (i.e., structural plant material). Our results also suggest that body-size ranges are different across dietary specializations. Smaller mammals (<1 kg) are mainly insectivores, granivores, or mixed feeders, while bigger animals (>30 kg) are usually either carnivores or herbivores that feed specifically on grasses and leaves. The medium-size range (1–30 kg) is mostly composed of frugivorous species that inhabit tropical and subtropical rain forests. Thus, the near absence of medium-sized mammals in open environments such as savannas can be linked to the decreasing density of fruit trees needed to support a pure frugivorous diet year-round. In other words, seasonality of precipitation prevents species from specializing on a totally frugivorous diet. Our results suggest that this new classification scheme correlates well with body mass, one of the most studied morphological variables in paleoecology and ecomorphology. Therefore, the classification should serve as a useful basis for future paleoclimatological studies.

Hide All
Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.
Alroy, J., Koch, P. L., and Zachos, J. C.. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259288.
Andrews, P., and Evans, E. N.. 1979. The environment of ramapithecus in Africa. Paleobiology 5:2230.
Andrews, P., Lord, J. M., and Evans, E. M. N.. 1979. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11:177205.
Bartumeus, F., and Catalan, J.. 2009. Optimal search behavior and classic foraging theory. Journal of Physics A 42:434002.
Beeman, L. E., and Pelton, M. R.. 1980. Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Bears: Their Biology and Management 4:141147.
Bro, R., and Smilde, A. K.. 2014. Principal component analysis. Analytical Methods 6:28122831.
Brown, J. H., and Nicoletto, P. F.. 1991. Spatial scaling of species composition: body masses of North American land mammals. American Naturalist 138:14781512.
Burness, G. P., Diamond, J., and Flannery, T.. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences USA 98:1451814523.
Carbone, C., Mace, G. M., Roberts, S. C., and Macdonald, D. W.. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286288.
Clauss, M., Schwarm, A., Ortmann, S., Streich, W. J., and Hummel, J.. 2007. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comparative Biochemistry and Physiology Part A 148:249265.
Clauss, M., Steuer, P., Müller, D. W. H., Codron, D., and Hummel, J.. 2013. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 8:e68714.
Colon, C. P., and Campos-Arceiz, A.. 2013. The impact of gut passage by binturongs (Arctictis binturong) on seed germination. Raffles Bulletin of Zoology 61:417421.
Demes, B., and Creel, N.. 1988. Bite force, diet, and cranial morphology of fossil hominids. Journal of Human Evolution 17:657670.
Demment, M. W., and Van Soest, P. J.. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125:641672.
Eisenberg, J. F. 1981. The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago.
Fernández-Hernández, M., Alberdi, M. T., Azanza, B., Montoya, P., Morales, J., Nieto, M., and Peláez-Campomanes, P.. 2006. Identification problems of arid environments in the Neogene–Quaternary mammal record of Spain. Journal of Arid Environments 66:585608.
Fisher, D. O., and Dickman, C. R.. 1993. Diets of insectivorous marsupials in arid Australia: selection for prey type, size or hardness? Journal of Arid Environments 25:397410.
Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., and Vislobokova, I.. 2002. Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evolutionary Ecology Research 4:10051016.
Ganesh, T., and Davidar, P.. 1999. Fruit biomass and relative abundance of frugivores in a rain forest of southern Western Ghats, India. Journal of Tropical Ecology 15:399413.
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Museum of Paleontology, University of Michigan, Ann Arbor.
Gittleman, J. 1985. Carnivore body size: ecological and taxonomic correlates. Oecologia 67:540554.
Hawes, J. E., and Peres, C. A.. 2014. Ecological correlates of trophic status and frugivory in neotropical primates. Oikos 123:365377.
Humphries, M. M., Thomas, D. W., and Kramer, D. L.. 2003. The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiological and Biochemical Zoology 76:165179.
Kay, R. F. 1984. On the use of anatomical features to infer foraging behavior in extinct primates. Pp. 2153 in J. Cant, and P. Rodman, eds. Adaptations for foraging in nonhuman primates. Columbia University Press, New York.
Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Paleovertebrata, Montpellier 16:191212.
Liu, L., Puolamäki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E., and Fortelius, M.. 2012. Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society B 279:27932799.
MacArthur, R. H., and Pianka, E. R.. 1966. On optimal use of a patchy environment. American Naturalist 100:603609.
Map of Life 2016.
McLellan, B. N. 2011. Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of Zoology 89:546558.
Milton, K., and May, M. L.. 1976. Body weight, diet and home range area in primates. Nature 259:459462.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., and Morrison, J. C.. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:933938.
Palmqvist, P., Gröcke, D. R., Arribas, A., and Fariña, R. A.. 2003. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. Paleobiology 29:205229.
Petchey, O. L., Beckerman, A. P., Riede, J. O., and Warren, P. H.. 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences USA 105:41914196.
Peters, R. H. 1986. The ecological implications of body size. Cambridge University Press, New York.
Pineda-Munoz 2015. Mutli-proxy dental morphology analysis: a new approach for inferring diet. Society of Vertebrate Paleontology 75th Annual Meeting. Dallas, Tex.
Pineda-Munoz, S., and Alroy, J.. 2014. Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B 281:1789.
Price, S. A., and Hopkins, S. S. B.. 2015. The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society 115:173184.
Pyke, G. H., Pulliam, H. R., and Charnov, E.. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52:137154.
R Core Team. 2013. R: a Language and environment for statistical computing. Vienna, Austria.
Raia, P., Carotenuto, F., Passaro, F., Fulgione, D., and Fortelius, M.. 2012. Ecological specialization in fossil mammals explains Cope’s rule. American Naturalist 179:328337.
Reed, K. E. 1998. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24:384408.
Robinson, J. G., and Redford, K. H.. 1986. Body size, diet, and population density of Neotropical forest mammals. American Naturalist 128:665680.
Rodríguez, J. 1999. Use of cenograms in mammalian palaeoecology. A critical review. Lethaia 32:331347.
Schoener, T. W. 1989. Food webs: from the small to the large: the Robert H. MacArthur Award Lecture. Ecology 70:15591589.
Schwartz, C. C., and Ellis, J. E.. 1981. Feeding ecology and niche separation in some native and domestic ungulates on the Shortgrass Prairie. Journal of Applied Ecology 18:343353.
Siemann, E., and Brown, J. H.. 1999. Gaps in mammalian body size distributions reexamined. Ecology 80:27882792.
Simpson, E. H. 1949. Measurement of diversity. Nature 163:688688.
Smith, F. A., and Lyons, S. K.. 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philosophical Transactions of the Royal Society B 366:23642378.
Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P.. 2003. Body mass of late Quaternary mammals. Ecology 84:34033403.
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. M., and Hadly, E. A.. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163:672691.
Steuer, P., Südekum, K.-H., Tütken, T., Müller, D. W. H., Kaandorp, J., Bucher, M., Clauss, M., and Hummel, J.. 2014. Does body mass convey a digestive advantage for large herbivores? Functional Ecology 28:11271134.
Travouillon, K. J., and Legendre, S.. 2009. Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 272:6984.
Ungar, P. S. 2010. Mammal teeth: origin, evolution, and diversity. Johns Hopkins University Press, Baltimore, Md.
Valverde, J. A. 1967. Estructura de una comunidad mediterránea de vertebrados terrestres. Consejo Superior de Investigaciones Científicas, Spain.
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., and Jetz, W.. 2014. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027.
Wilson, D. E., and Reeder, D. A. M.. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Md.
Wilson, E. O., ed. 1988. Biodiversity. National Academies Press, Washington, D.C.
Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., and Jernvall, J. 2012. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483:457460.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed