Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T19:47:58.760Z Has data issue: false hasContentIssue false

Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques

Published online by Cambridge University Press:  08 April 2016

Patrick D. Wall
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244. E-mail: pdwall@syr.edu
Linda C. Ivany
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244. E-mail: lcivany@syr.edu
Bruce H. Wilkinson
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244. E-mail: eustasy@syr.edu

Abstract

Since David Raup's seminal 1976 work, paleontologists have been aware of the relationship between outcrop area and diversity. By incorporating lithologic data derived from Alexander Ronov and coworkers into our own data on areas of mapped outcrops from worldwide geologic maps, we are able to establish a quantitative connection between area of sedimentary rock exposure and diversity from the same general depositional environments. Significant power-law relations are observed at both global and continental scales of consideration. The addition of data on areas of habitable area estimated from paleogeographic maps does not substantially affect these correlations between outcrop area and diversity, indicating that the relation between outcrop area and diversity is primarily a function of sampling and not a common cause such as sea level. We observe a significant diversity-area effect, first noted by Jack Sepkoski in the marine realm. Unlike Sepkoski's, however, our diversity-area effect appears to play a substantial role in influencing diversity through time; a true global diversity signal appears to be contained in the rock record despite the impacts of variable sampling.

Greater outcrop area can serve to increase estimated diversity by increasing both the sample size and the range of habitats and biogeographic provinces sampled. After standardizing for pure sampling intensity by rarefying the number of taxon occurrences, outcrop area continues to explain a substantial portion of global marine diversity. This indicates that coverage, or sampling from multiple habitats and biogeographic provinces, is even more important than sampling intensity. If we remove the effect of outcrop area from our estimate of global biodiversity, we do not observe a net increase in diversity toward the present, lending support to other studies that have not supported a substantial, long-term global increase in biodiversity during the Phanerozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2000. Successive approximations of diversity curves: ten more years in the library. Geology 28:10231026.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nuernberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Alroy, J., and Hendy, A. J. W. 2005. Did alpha diversity triple between the Paleozoic and Cenozoic? Geological Society of America Abstracts with Programs 37:117.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. 1993. Seafood through time; changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Benton, M. J. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Berry, J. P., and Wilkinson, B. H., 1994. Paleoclimatic and tectonic control on the accumulation of North American cratonic sediments. Geological Society of America Bulletin 106:855865.Google Scholar
Blatt, H., and Jones, R. L. 1975. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geological Society of America Bulletin 86:10865–1088.Google Scholar
Boss, S. K., and Wilkinson, B. H. 1991. Planktogenic/eustatic control on cratonic/oceanic carbonate accumulation. Journal of Geology 99:497513.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.2.0.CO;2>CrossRefGoogle Scholar
Choubert, G., and Faure-Muret, A. 1976. Geological atlas of the world. 1:10,000,000. 22 sheets with explanations. UNESCO/Commission for the Geologic Map of the World, Paris.Google Scholar
Cook, T. D., and Bally, A. W., eds. 1975. Stratigraphic atlas of North and Central America. Princeton University Press, Princeton, N.J. Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B. A., and Maxwell, P. A. 2003. Estimating the rock volume bias in Paleobiodiversity studies. Science 301:358360.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A., and Marshall, B. A. 2006a. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand Eocene to Recent shelf molluscs. Palaios 21:86105.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006b. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.CrossRefGoogle Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Martín, H. García, and Goldenfeld, N. 2006. On the origin and robustness of power-law species-area relationships in ecology. Proceedings of the National Academy of Sciences USA 103:1031010315.Google Scholar
Gould, S. J. 1975. Diversity through time. Natural History 84:2432.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hendy, A. J. W. 2009. The influence of lithification on Cenezoic marine biodiversity trends. Paleobiology 35:5264 (this issue).CrossRefGoogle Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1999. Models for simulating the fossil record. Geology 27:491494.Google Scholar
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the Pull of the Recent on the history of marine diversity. Science 300:11331135.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.Google Scholar
Keroher, G. C. 1966. Lexicon of geologic names of the United States for 1936–1960. U.S. Geological Society Bulletin 1200.Google Scholar
Keroher, G. C. 1970. Lexicon of geologic names of the United States for 1961–1967. U.S. Geological Society Bulletin 1350.Google Scholar
Khain, V. Ye., and Balukhovskiy, A. N. 1979. Neogene lithologic associations of the world. Soviet Geology 10:1523.Google Scholar
Khain, V. Ye., and Seslavinskiy, K. B. 1977. Silurian lithologic associations of the world. Soviet Geology 5:2142.Google Scholar
Khain, V. Ye., Ronov, A. B., and Balukhovskiy, A. N. 1975. Cretaceous lithologic associations of the world. Soviet Geology 11:1039.Google Scholar
Kidwell, S. M., and Holland, S. M. 2002. The quality of the fossil record; implications for evolutionary analyses. Annual Review of Ecology and Systematics 33:561588.Google Scholar
Knoll, A. H., and Bambach, R. K. 2000. Directionality in the history of life; diffusion from the left wall or repeated scaling of the right? In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective 26(Suppl. to No. 4):114.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. Barbour, and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of the marine benthos. Paleobiology 32:533561.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
Miller, A. I. 1997. Dissecting global diversity patterns: examples from the Ordovician Radiation. Annual Review of Ecology and Systematics 28:85104.Google Scholar
Miller, A. I. 2000. Conversations about Phanerozoic global diversity, In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):5373.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate paleontology. Journal of Paleontology 26:371385.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Phillips, J. 1860. Life on the earth: its origin and succession. Macmillan, Cambridge, U.K. Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.Google Scholar
Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
R Development Core Team. 2005. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org Google Scholar
Ronov, A. B. 1964. General trends in the composition of the crust, ocean, and atmosphere: Geokhimiya 8:714743.Google Scholar
Ronov, A. B. 1978. The earth's sedimentary shell. International geology review 24:13131363.Google Scholar
Ronov, A. B. 1980. The earth's sedimentary shell: quantitative patterns of its structures, compositions and evolution (the 20th V. I. Vernadskiy Lecture). Pp. 180 in Yaroshevskiy, A. A., ed. The earth's sedimentary shell. Nauka, Moscow. [American Geological Institute Reprint Series 5:1–73.] Google Scholar
Ronov, A. B. 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science 294:777801.Google Scholar
Ronov, A. B., and Khain, V. Ye. 1954. Devonian lithologic associations of the world. Soviet Geology 41:4776.Google Scholar
Ronov, A. B., and Khain, V. Ye. 1955. Carboniferous lithologic associations of the world. Soviet Geology 48:92117.Google Scholar
Ronov, A. B., and Khain, V. Ye. 1956. Permian lithologic associations of the world. Soviet Geology 54:2036.Google Scholar
Ronov, A. B., and Khain, V. Ye. 1961. Triassic lithologic associations of the world. Soviet Geology 1:2748.Google Scholar
Ronov, A. B., and Khain, V. Ye. 1962. Jurassic lithologic associations of the world. Soviet Geology 1:934.Google Scholar
Ronov, A. B., Khain, V. Ye., and Balukhovskiy, A. N. 1974a. Paleogene lithologic associations of the world. Soviet Geology 3:1042.Google Scholar
Ronov, A. B., Seslavinskiy, K. B., and Khain, V. Ye. 1974b. Cambrian lithologic associations of the world. Soviet Geology 12:1033.Google Scholar
Ronov, A. B., Khain, V. Ye., and Seslavinskiy, K. B. 1976. Ordovician lithologic associations of the world. Soviet Geology 1:727.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Scotese, C. R., and Golonka, J. 1992. Paleogeographic atlas. PALEOMAP Progress Report 20-0692. Department of Geology, University of Texas, Arlington.Google Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioral diversity in the deep sea. Neues Jahrbuch für Geologie und Paläontologie 4:233245.Google Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology No. 51.Google Scholar
Sepkoski, J. J. Jr. 1997. Biodiversity: past, present, and future. Journal of Paleontology 71:533539.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology No. 363.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.Google Scholar
Smith, A. B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society 164:731745.Google Scholar
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe. Palaeontology 50:765774.Google Scholar
Smith, A. B., Gale, A. S., and Monks, N. E. A. 2001. Sea-level change and rock record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Valentine, J. W. 1969. Niche diversity and niche size patterns in marine fossils. Journal of Paleontology 43:905915.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? A new approximation. Journal of Paleontology 44:410415.Google Scholar
Valentine, J. W., Foin, T. C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4:5566.Google Scholar
Walker, L. J., Wilkinson, B. H., and Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. Journal of Geology 110:7587.Google Scholar
Wilkinson, B. H., McElroy, B. J., Kessler, S. E., and Rothman, E. D. 2009. Geologic maps are tectonic speedometers—rates of rock cycling from area-age frequencies. Geological Society of America Bulletin (in press).Google Scholar