Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T07:49:43.078Z Has data issue: false hasContentIssue false

Roles for holes in sand dollars (Echinoidea): a review of lunule function and evolution

Published online by Cambridge University Press:  08 February 2016

Andrew B. Smith
Affiliation:
Department of Geology, University of Liverpool, P.O. Box 147, Liverpool, U.K.
Joe Ghiold
Affiliation:
Institut für Geologie, Universität Tübingen, 10 Sigwartstrasse, D-7400, Tübingen, Germany

Abstract

The function of lunules in sand dollars is reviewed and it is argued that ambulacral lunules and the anal lunule evolved for quite different purposes. Whereas ambulacral lunules evolved to increase the perimeter of the test for food gathering, this was clearly not the original function of the anal lunule, although in some genera it has become secondarily adapted to this role. Many of the unique features of the anal lunule can be explained if it evolved as an outlet for ciliary feeding currents drawn centripetally into the mouth, without disrupting either oral or aboral currents. This allowed the entire margin of the test to be used for collecting the fine particles sieved through the aboral spine canopy. Anal lunules probably evolved only once, in the Miocene, and the Monophorasteridae and Mellitidae are probably sister groups.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, D. E. and Ghiold, J. 1980. The functional significance of the lunules in the sand dollar Mellita quinquiesperforata. Biol. Bull. 159:561570.CrossRefGoogle Scholar
Barnes, R. D. 1974. Invertebrate Zoology. 3rd ed.870 pp. W. B. Saunders Co.; Philadelphia.Google Scholar
Bell, B. M. and Frey, R. W. 1969. Observations on ecology and the feeding and burrowing mechanisms of Mellita quinquiesperforata (Leske). J. Paleontol. 43:553560.Google Scholar
Berrill, N. J. and Berrill, J. 1957. 1001 Questions Answered about the Seashore. 305 pp. Dodd, Mead and Co.; New York.Google Scholar
Buchanan, J. B. 1969. Feeding and the control of volume within the tests of regular sea-urchins. J. Zool., London. 159:5164.CrossRefGoogle Scholar
Chesher, R. H. 1968. The systematics of sympatric species in West Indian spatangoids. Stud. trop. Oceanogr., Miami. 7:1168.Google Scholar
Chia, F. S. 1973. Sand dollar: a weight belt for the juvenile. Science, New York. 181:7374.CrossRefGoogle ScholarPubMed
Crozier, W. J. 1919. On regeneration and reformation of lunules in Mellita. Am. Nat. 53:9396.CrossRefGoogle Scholar
Culver, S. 1961. Observations on the biology of the sand dollar Mellita quinquiesperforata. M.A. Thesis, Duke University. 109 pp.Google Scholar
Dexter, D. M. 1977. A natural history of the sand-dollar Encope stokesi L. Agassiz in Panama. Bull. Mar. Sci. 27:544551.Google Scholar
Durham, J. W. 1955. Classification of clypeasteroid echinoids. Univ. Calif. Pub. Geol. Sci. 31:73198.Google Scholar
Durham, J. W. 1966. Clypeasteroids. Pp. 450491. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, part U, Echinodermata 3. Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Ebert, T. A. and Dexter, D. M. 1975. A natural history study of Encope grandis and Mellita grantii; two sand dollars in the northern Gulf of California, Mexico. Mar. Biol. 32:397407.CrossRefGoogle Scholar
Ghiold, J. 1979. Spine morphology and its significance in feeding and burrowing in the sand dollar Mellita quinquiesperforata (Echinodermata: Echinoidea). Bull. Mar. Sci. 29:481490.Google Scholar
Ghiold, J. 1982. Observations on the clypeasteroid Echinocyamus pusillus (O. F. Müller) J. Exp. Mar. Biol. Ecol. 61:5774.CrossRefGoogle Scholar
Ghiold, J. and Seilacher, A. 1982. External structures of Clypeasteroidea and their functional differentiation. In: Seilacher, A., Reif, W. E., and Westphal, F., eds. Report of the SFB 53 1979–1981: N. Jb. Geol. Paläont. Abh.Google Scholar
Gislén, T. 1924. Echinoderm studies. Zool. Bidr. Upps. 9:1316.Google Scholar
Goodbody, I. 1960. The feeding mechanism in the sand dollar Mellita sexiesperforata (Leske). Biol. Bull. 119:8086.CrossRefGoogle Scholar
Hyman, L. H. 1958. Notes on the biology of the five-lunuled sand dollar. Biol. Bull. 114:5456.CrossRefGoogle Scholar
Ikeda, H. 1939. Studies on the pseudofasciole of the scutellids (Echinoidea, Scutellidae). J. Dept. Agr. Kyusyu Imp. Univ. 6:4193.Google Scholar
Ikeda, H. 1941. Function of the lunules of Astriclypeus as observed in the righting movement (Echinoidea). Annot. Zool. Jpn. 20:7982.Google Scholar
Kenk, R. 1944. Ecological observations on two Puerto-Rican echinoderms Mellita lata and Astropecten marginatus. Biol. Bull. 87:177187.CrossRefGoogle Scholar
Kier, P. M. 1982. Rapid evolution in echinoids. Palaeontology. 25:110.Google Scholar
Lane, J. M. 1977. Bioenergetics of the sand dollar Mellita quinquiesperforata (Leske, 1878). Ph.D. dissertation, Univ. of S. Florida. 363 pp.Google Scholar
Mooi, R. and Telford, M.(in press)The feeding mechanism of the sand dollar Echinarachnius parma (Lamarck). Proc. 4th Internatl. Echinoderm Conf.Google Scholar
Moss, J. E. and Lawrence, J. M. 1972. Changes in carbohydrate, lipid and protein levels with age and season in the sand dollar Mellita quinquiesperforata (Leske). J. Exp. Mar. Biol. Ecol. 8:255259.CrossRefGoogle Scholar
Nichols, D. 1959. Changes in the chalk heart-urchin Micraster interpreted in relation to living forms. Phil. Trans. R. Soc. Lond. (B) 242:347437.Google Scholar
Parks, N. B. 1973. Distribution and abundance of the sand dollar Dendraster excentricus off the coast of Oregon and Washington. Fish. Bull. Natl. Oceanic Atmos. Adm. U.S. 71:11051109.Google Scholar
Salsman, G. G. and Tolbert, W. H. 1965. Observations on the sand dollar Mellita quinquiesperforata. Limnol. Oceanogr. 10:152155.CrossRefGoogle Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology. 5:191221.CrossRefGoogle Scholar
Smith, A. B. 1980. The structure and arrangement of echinoid tubercles. Phil. Trans. R. Soc. Lond. (B). 289:154.Google Scholar
Telford, M. 1981. Hydrodynamic interpretation of sand dollar morphology. Bull. Mar. Sci. 31:605622.Google Scholar
Vogel, S. 1977. Flows in organisms induced by movements of the external medium. Pp. 285297. In: Pendley, T. J., ed. Scale Effects in Animal Locomotion. Academic Press Inc.; New York.Google Scholar
Weihe, S. C. and Grey, I. E. 1968. Observations on the biology of the sand dollar Mellita quinquiesperforata (Leske). J. Elisha Mitchell Sci. Soc. 84:315327.Google Scholar