Skip to main content
×
Home

Temporal dynamics of encrusting communities during the Late Devonian: a case study from the Central Devonian Field, Russia

  • Michał Zatoń (a1), Tomasz Borszcz (a2) and Michał Rakociński (a1)
Abstract
Abstract

In this study we focused on the dynamics of encrusting assemblages preserved on brachiopod hosts collected from upper Frasnian and lower Famennian deposits of the Central Devonian Field, Russia. Because the encrusted brachiopods come from deposits bracketing the Frasnian/Famennian (F/F) boundary, the results also shed some light on ecological differences in encrusting communities before and after the Frasnian–Famennian (F-F) event. To explore the diversity dynamics of encrusting assemblages, we analyzed more than 1300 brachiopod valves (substrates) from two localities. Taxon accumulation plots and shareholder quorum subsampling (SQS) routines indicated that a reasonably small sample of brachiopod host valves (n=50) is sufficient to capture the majority of the encrusting genera recorded at a given site. The richness of encrusters per substrate declined simultaneously with the number of encrusting taxa in the lower Famennian, accompanied by a decrease in epibiont abundance, with a comparable decrease in mean encrustation intensity (percentage of bioclasts encrusted by one or more epibionts). Epibiont abundance and occupancy roughly mirror each other. Strikingly, few ecological characteristics are correlated with substrate size, possibly reflecting random settlement of larvae. Evenness, which is negatively correlated with substrate size, shows greater within-stage variability among samples than between Frasnian and Famennian intervals and may indicate the instability of early Famennian biocenoses following the faunal turnover. The occurrence distribution of encrusters points to nonrandom associations and exclusions among several encrusting taxa. However, abundance and occupancy of microconchids remained relatively stable throughout the sampled time interval. The notable decline in abundance (~60%) and relatively minor decline in diversity (~30%) suggest jointly that encrusting communities experienced ecological collapse rather than a major mass extinction event. The differences between the upper Frasnian and lower Famennian encrusting assemblages may thus record a turnover associated with the F-F event.

Copyright
References
Hide All
Alekseev A. S, Kononova L. I., and Nikishin A. M.. 1996. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): stratigraphy and sea-level changes. Tectonophysics 268:149168.
Alroy J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In J. Alroy, and G. Hunt, eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:5580. Yale Printing Services, New Haven, Conn.
Alroy J. 2015. A new twist on a very old binary similarity coefficient. Ecology 96:575586.
Alroy J. 2016. John Alroy’s home page, Macroecology and Macroevolution, Macquarie University. http://bio.mq.edu.au/~jalroy, accessed: 11 April 2016.
Alroy J., Marshall C. R., Bambach R. K., Bezusko K., Foote M., Fürsich F. T., Hansen T. A., Holland S. M., Ivany L. C., Jablonski D., Jacobs D. K., Jones D. C., Kosnik M. A., Lidgard S., Low S., Miller A. I., Novack-Gottshall P. M., Olszewski T. D., Patzkowsky M. E., Raup D. M., Roy K., Sepkoski J. J. Jr., Sommers M. G., Wagner P. J., and Webber A.. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.
Alvarez F., and Taylor P. D.. 1987. Epizoan ecology and interactions in the Devonian of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 61:1731.
Aristov V. A. 1988. Devonian conodonts from the Central Devonian Field. Nauka, Moscow.
Baliński A., and Racki G.. 1981. Environmental interpretation of the atrypid shell beds from the Middle to Upper Devonian boundary of the Holy Cross Mts and Cracow Upland. Acta Geologica Polonica 31:177211.
Barclay K. M., Schneider C. L., and Leighton L. R.. 2013. Palaeoecology of Devonian sclerobionts and their brachiopod hosts from the Western Canadian Sedimentary Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 383−384:7991.
Barclay K. M., Schneider C. L., and Leighton L. R.. 2015. Mapping sclerobiosis: a new method for interpreting the distribution, biological implications, and paleoenvironmental significance of sclerobionts on biotic hosts. Paleobiology 41:592609.
Barnes D. K. A. 2006. Temporal-spatial stability of competition in marine boulder fields. Marine Ecology Progress Series 314:1523.
Barnes D. K. A., and Kukliński P.. 2003. High polar spatial competition: extreme hierarchies at extreme latitude. Marine Ecology Progress Series 259:1728.
Barnes D. K. A., and Kuklinski P.. 2004a. Scale-dependent variation in competitive ability among encrusting Arctic species. Marine Ecology Progress Series 275:2132.
Barnes D. K. A., and Kuklinski P.. 2004b. Variability of competition at scales of 10(1), 10(3), 10(5), and 10(6) m: encrusting Arctic community patterns. Marine Biology 145:361372.
Barnes D. K. A., and Kuklinski P.. 2005. Bipolar patterns of intraspecific competition in bryozoans. Marine Ecology Progress Series 285:7587.
Barnes D. K. A., and Peck L. S.. 1996. Epibiota and attachment substrata of deep-water brachiopods from Antarctica and New Zealand. Philosophical Transactions of the Royal Society of London B 351:677687.
Barnes D. K. A., and Peck L. S.. 1997. An Antarctic shelf population of the deep-sea, Pacific brachiopod Neorhynchia strebeli . Journal of the Marine Biological Association of the United Kingdom 77:399407.
Behrensmeyer A. K., Todd N. E., Potts R., and McBrinn G.. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278:15891594.
Berkowski B. 2001. Famennian colonial Rugosa from southern Poland. Recovery and extinction. Bulletin of the Tohoku University Museum 1:285290.
Berkowski B. 2002. Famennian Rugosa and Heterocorallia from southern Poland. Palaeontologia Polonica 61:388.
Berkowski B., Zapalski M. K., and Wrzołek T.. 2016. New Famennian colonial coral (Rugosa) from the Holy Cross Mountains (Poland): an example of local evolution after Frasnian−Famennian extinction. Science of Nature 103:33.
Bitner M. A. 1996. Encrusters and borers of brachiopods from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Research 17:2128.
Bordeaux Y. L., and Brett C. E.. 1990. Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology. Historical Biology 4:203220.
Borszcz T. 2012. Echinoids as substrates for encrustation—review and quantitative analysis. Annales Societatis Geologorum Poloniae 82:139149.
Borszcz T., Kuklinski P., and Zatoń M.. 2013. Encrustation patterns on Late Cretaceous (Turonian) echinoids from southern Poland. Facies 59:299318.
Brett C. E., and Walker S. E.. 2002. Predators and predation in Paleozoic marine environments. Paleontological Society Papers 8:93118.
Brett C. E., Ivany L. C., and Schopf K. M.. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 23:120.
Brett C. E., Smrecak T., Parsons-Hubbard K., and Walker S.. 2012. Marine sclerobiofacies: encrusting and endolithic communities on shells through time and space. Pp. 129157 in J. D. Talent, ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time (international year of planet Earth). Springer, Dordrecht, Netherlands.
Bush A. M., and Brame R. I.. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.
Buss L. W. 1979. Bryozoan overgrowth interactions: the interdependence of competition for space and food. Nature 281:475477.
Clapham M. E., and Bottjer D. J.. 2007. Prolonged Permian−Triassic ecological transition recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy Sciences USA 104:1297112975.
Clapham M. E., Bottjer D. J., Powers C. M., Bonuso N., Fraiser M. L., Marenco P. J., Dornbos S. Q., and Pruss S. B.. 2006. Assessing the ecological dominance of Phanerozoic marine invertebrates. Palaios 21:431441.
Colwell R. K. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application published at: http://purl.oclc.org/estimates.
Droser M. L., Bottjer D. J., Sheehan P. M., and McGhee G. R. Jr. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic mass extinctions. Geology 28:675678.
Filipiak P., and Zbukova D. V.. 2006. Palynostratigraphy of the Frasnian–Famennian boundary deposits from the Central Devonian Field, western Russia and comparisons with adjacent areas. Review of Palaeobotany and Palynology 138:109120.
Flessa K. W., and Kowalewski M.. 1994. Shell survival and time-averaging in nearshore environments: estimates from the radiocarbon literature. Lethaia 27:153165.
Foote M. 2016. On the measurement of occupancy in ecology and paleontology. Paleobiology 42:707729.
Forcino F. L. 2012. Multivariate assessment of the required sample size for community paleoecological research. Palaeogeography, Palaeoclimatology, Palaeoecology 315–316:134141.
Forcino F. L., Richards E. J., Leighton L. R., Chojnacki N., and Stafford E. S.. 2012. The sensitivity of paleocommunity sampling strategy at different spatiotemporal scales. Palaeogeography, Palaeoclimatology, Palaeoecology 313–314:246253.
Forcino F. L., Leighton L. R., Twerdy P., and Cahill J. F.. 2015. Reexamining sample size requirements for multivariate, abundance-based community research: when resources are limited, the research does not have to be. PLoS ONE 10:e0128379. doi: 10.1371/journal.pone.0128379.
Fraiser M. L. 2011. Paleoecology of secondary tierers from western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 308:181189.
Głuchowski E. 2005. Epibionts on upper Eifelian crinoid columnals from the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica 50:315328.
Grabowska M., Grzelak K., and Kukliński P.. 2015. Rock encrusting assemblages: structure and distribution along the Baltic Sea. Journal of Sea Research 103:2431.
Hallam A., and Wignall P. B.. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.
Hammer Ø., Harper D. A. T., and Ryan P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.
He L., Wang Y., Woods A., Li G., Yang H., and Liao W.. 2012. Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China. Palaios 27:878886.
Hoffman A., and Reif W. E.. 1990. On the study of evolution in species-level lineages in the fossil record: controlled methodological sloppiness. Palaontologische Zeitschrift 64:514.
Huntley J. W., and Kowalewski M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.
Jackson J. C. B., and Buss L.. 1975. Allelopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences USA 12:51605163.
Johnson J. G., Klapper G., and Sandberg C. A.. 1985. Devonian eustatic fluctuations in Euroamerica. Geological Society of America Bulletin 96:567587.
Kidwell S. M., Rothfus T. A., and Best M. M. R.. 2001. Sensitivity of taphonomic signatures to sample size, sieve size, damage scoring system, and target taxa. Palaios 16:2652.
Kowalewski M. 1990. A hermeneutic analysis of the shell-drilling gastropod predation on mollusks in the Korytnica Clays (Middle Miocene; Holy Cross Mountains; Central Poland). Acta Geologica Polonica 40:183213.
Kowalewski M., and Novack-Gottshall P.. 2010. Resampling methods in paleontology. In J. Alroy, and G. Hunt, eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:1954. Yale Printing Services, New Haven, Conn.
Kowalewski M., Hoffmeister A. P., Baumiller T. K., and Bambach R. K.. 2005. Secondary evolutionary escalation between brachiopods and enemies of other prey. Science 308:17741777.
Kuklinski P., and Barnes D. K. A.. 2008. Structure of intertidal and subtidal assemblages in Arctic vs temperate boulder shores. Polish Polar Research 29:203218.
Leighton L. R. 2003. Predation on brachiopods. Pp. 215237 in P. H. Kelley, M. Kowalewski, and T. A. Hansen, eds. Predator–prey interaction in the fossil record. Plenum Press, New York.
Lescinsky H. L. 1995. The life orientation of concavo-convex brachiopods: overturning the paradigm. Paleobiology 21:520551.
Lescinsky H. L. 1997. Epibiont communities: recruitment and competition on North American Carboniferous brachiopods. Journal of Paleontology 71:3453.
Levin S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.
Liao W. 2002. Biotic recovery from the Late Devonian F–F mass extinction event in China. Science in China (Series D) 45:380384.
Ma X., Gong Y., Chen D., Racki G., Chen X., and Liao W.. 2016. The Late Devonian Frasnian–Famennian Event in South China—patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology 448:224244.
Manojlovic M., and Clapham M. E.. 2014. Examining the role of substrate preference in brachiopod decline following Jurassic recovery using the Paleobiology Database. Geological Society of America Abstracts with Program 46:2.
McGhee G. R., Clapham M. E., Sheehan P. M., Bottjer D. J., and Droser M. L.. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370:260270.
McKinney F. K. 1995. Taphonomic effects and preserved overgrowth relationships among encrusting marine organisms. Palaios 10:279282.
Oliver W. A. Jr., and Pedder A. E. H.. 1994. Crises in the Devonian history of the rugose corals. Paleobiology 20:178190.
Olszewski T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.
Ovnatanova N. S., and Kononova L. I.. 2001. Conodonts and Upper Devonian (Frasnian) biostratigraphy of Central Regions of Russian Platform. Courier Forschungsinstitut Senckenberg 233:1115.
Pawlik J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review 30:273335.
Pineda J., Riebensahm D., and Medeiros-Bergen D.. 2002. Semibalanus balanoides in winter and spring: larval concentration, settlement, and substrate occupancy. Marine Biology 140:789800.
Poty E. 1999. Famennian and Tournaisian recoveries of shallow water Rugosa after the late Frasnian and the late Strunian major crisis, in southern Belgium and surrounding areas, Hunan (South China) and the Omolon region (NE Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 154:1126.
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
Racki G. 2005. Toward understanding Late Devonian global events: few answers, many questions. Pp. 536. in D. J. Over, J. R. Morrow, and P. B. Wignall, eds. Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Elsevier, Amsterdam.
Rakociński M. 2011. Sclerobionts on upper Famennian cephalopods from the Holy Cross Mountains, Poland. Palaeobiodiversity and Palaeoenvironments 91:6373.
Ramirez-Llodra E., Brandt A., Danovaro R., De Mol B., Escobar E., German C. R., Levin L. A., Martinez Arbizu P., Menot L., Buhl-Mortensen P., Narayanaswamy B. E., Smith C. R., Tittensor D. P., Tyler P. A., Vanreusel A., and Vecchione M.. 2010. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:28512899.
Rodionova G. D., Umnova V. T., Ovnatanova M. A., Rzhonsnitskaya M. A., and Fedorova T. I.. 1995. Devon Voronežskoj anteclizy I Moskovskoj sineklizy. Nedra, Moscow.
Rodland D. L., Kowalewski M., Simões M. G, and Carroll M.. 2004. Colonization of a “lost world”: encrustation patterns in modern subtropical brachiopod assemblages. Palaios 19:381395.
Rodland D. L., Kowalewski M., Carroll M., and Simões M. G. 2006. The temporal resolution of epibiont assemblages: are they ecological snapshots or overexposures? Journal of Geology 114:313324.
Rodland D. L., Simões M. G., Krause R. A. Jr., and Kowalewski M.. 2014. Stowing away on ships that pass in the night: sclerobiont assemblages on individually dated bivalve and brachiopod shells from a subtropical shelf. Palaios 29:170183.
Schneider C. L. 2013. Epibiosis across the Late Devonian biotic crisis: a review. Proceedings of the Geologists’ Association 124:893909.
Scrutton C. T. 1988. Patterns of extinction and survival in Palaeozoic corals. Pp. 6588. in G. P. Larwood, ed. Extinction and survival in the fossil record. Systematics Association Special Volume 34. Oxford University Press, London.
Smith S. A., Thayer C. W., and Brett C. E.. 1985. Predation in the Paleozoic: gastropod-like drillholes in Devonian brachiopods. Science 230:10331035.
Sogot C. E., Harper E. M., and Taylor P. D.. 2013. Biogeographical and ecological patterns in bryozoans across the Cretaceous–Paleogene boundary: implications for the phytoplankton collapse hypothesis. Geology 41:631634.
Sogot C. E., Harper E. M., and Taylor P. D.. 2014. The Lilliput effect in colonial organisms: cheilostome bryozoans at the Cretaceous–Paleogene mass extinction. PLoS ONE 9:e87048.
Sokiran E. V. 2002. Frasnian–Famennian extinction and recovery of rhynchonellid brachiopods from the East European Platform. Acta Palaeontologica Polonica 47:339354.
Sokiran E. V. 2006. Early-Middle Frasnian cyrtospiriferid brachiopods from the East European Platform. Acta Palaeontologica Polonica 51:759772.
Taylor P. D., and Wilson M. A.. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62:1103.
Todd J. A., Jackson J. B. C., Johnson K. G., Fortunato H. M., Heitz A., Alvarez M., and Jung P.. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.
Tomašových A., Kidwell S. M., Foygel Barber R., and Kaufman D. S.. 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.
Wahl M., Link H., Alexandridis N., Thomason J. C., Cifuentes M., Costello M. J., da Gama B. A. P., Hillock K., Hobday A. J., Kaufmann M. J., Keller S., Kraufvelin P., Krüger I., Lauterbach L., Antunes B. L., Molis M., Nakaoka M., Nyström J., bin Radzi Z., Stockhausen B., Thiel M., Vance T., Weseloh A., Whittle M., Wiesmann L., Wunderer L., Yamakita T., and Lenz M.. 2011. Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness. PLoS ONE 6:e19514.
Węsławski J. M., Wlodarska-Kowalczuk M., Kedra M., Legezynska J., and Kotwicki L.. 2012. Eight species that rule today’s European Arctic fjord benthos. Polish Polar Research 33:225238.
Williams P. H., and Gaston K. J.. 1994. Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation 67:211217.
Wilson M. A., and Taylor P. D.. 2006. Predatory drillholes and partial mortality in Devonian colonial metazoans. Geology 34:565568.
Winfree R., Fox J., Williams N., Reilly J., and Cariveau D.. 2015. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters 18:626635.
Wisshak M., Kroh A., Bertling M., Knaust D., Nielsen J. K., Jagt J. W. M., Neumann C., and Nielsen K. S. S.. 2015. In defence of an iconic ichnogenus—Oichnus Bromley, 1981. Annales Societatis Geologorum Poloniae 85:445451.
Włodarska-Kowalczuk M., and Kędra M.. 2007. Surrogacy in natural patterns of benthic distribution and diversity: lower taxonomic resolution versus indicator groups. Marine Ecology Progress Series 352:5363.
Yang H., Chen Z.-Q., Wang Y., Ou W., Liao W., and Mei X.. 2015. Palaeoecology of microconchids from microbialites near the Permian–Triassic boundary in South China. Lethaia 48:497508.
Zapalski M. K. 2005. Palaeoecology of Auloporida: an example from the Devonian of the Holy Cross Mts., Poland. Geobios 38:677683.
Zatoń M., and Borszcz, T. T. 2013. Encrustation patterns on post-extinction early Famennian (Late Devonian) brachiopods from Russia. Historical Biology 25:112.
Zatoń M., and Krawczyński W.. 2011. Microconchid tubeworms across the upper Frasnian–lower Famennian interval in the Central Devonian Field, Russia. Palaeontology 54:14551473.
Zatoń M., Zhuravlev A. V., Rakociński M., Filipiak P., Borszcz T., Krawczyński W., Wilson M. A., and Sokiran E. V.. 2014. Microconchid-dominated cobbles from the Upper Devonian of Russia: opportunism and dominance in a restricted environment following the Frasnian–Famennian biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 401:142153.
Zatoń M., Borszcz T., Berkowski B., Rakociński M., Zapalski M. K., and Zhuravlev A. V.. 2015. Paleoecology and sedimentary environment of the Late Devonian coral biostrome from the Central Devonian Field, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 424:6175.
Zatoń M., Niedźwiedzki G., Blom H., and Kear B.. 2016. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction. Scientific Reports 6:36345.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 250 *
Loading metrics...

* Views captured on Cambridge Core between 22nd June 2017 - 21st November 2017. This data will be updated every 24 hours.