Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T23:50:39.938Z Has data issue: false hasContentIssue false

Discrimination between Gyrodactylus salaris, G. derjavini and G. truttae (Platyhelminthes: Monogenea) using restriction fragment length polymorphisms and an oligonucleotide probe within the small subunit ribosomal RNA gene

Published online by Cambridge University Press:  06 April 2009

C. O. Cunningham
Affiliation:
SOAFD Marine Laboratory, P.O. Box 101, Victoria Road, Aberdeen AB9 8DB
K. MacKenzie
Affiliation:
SOAFD Marine Laboratory, P.O. Box 101, Victoria Road, Aberdeen AB9 8DB
W. T. Melvin
Affiliation:
Department of Molecular and Cell Biology, University of Aberdeen, Aberdeen AB9 1AS

Summary

The small subunit ribosomal RNA (srRNA) gene was amplified from Gyrodactylus salaris using the polymerase chain reaction (PCR), cloned, and the complete gene sequence of 1966 bp determined. The V4 region of the srRNA gene was identified and amplified from single specimens of G. salaris, G. derjavini and G. truttae. Comparison of the V4 sequences from these three species revealed sequence differences from which restriction fragment length polymorphisms (RFLPs) were predicted and an oligonucleotide probe (GsV4) specific to G. salaris designed. Digestion of the amplified V4 region of the srRNA gene with Hae III and either Alw I, BstY I, Dde I or Mbo I provided a means of discriminating between G. salaris, G. derjavini and G. truttae. The GsV4 probe was used to detect the srRNA gene from G. salaris in Southern and dot blots of the amplified V4 region. The nucleotide sequences reported in this paper have been submitted to the EMBL Data Library under accession numbers Z26942 (G. salaris), Z35128 (G. derjavini) and Z35129 (G. truttae).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, B. A., Baylis, H. A., Allsopp, M. T. E. P., Cavalier-Smith, T., Bishop, R. P., Carrington, D. M., Sohanpal, B. & Spooner, P. (1993). Discrimination between six species of Theileria using oligonucleotide probes which detect small subunit ribosomal RNA sequences. Parasitology 107, 157–65.Google Scholar
Bakke, T. A., Harris, P. D., Jansen, P. A. & Hansen, L. P. (1992). Host specificity and dispersal strategy in gyrodactylid monogeneans, with particular reference to Gyrodactylus salaris (Platyhelminthes, Monogenea). Diseases of Aquatic Organisms 13, 6374.CrossRefGoogle Scholar
Bakke, T. A. & Mackenzie, K. (1993). Comparative susceptibility of native Scottish and Norwegian stocks of Atlantic salmon, Salmo salar L., to Gyrodactylus salaris Malmberg: laboratory experiments. Fisheries Research 17, 6985.Google Scholar
Blair, D. & McManus, D. P. (1991). Restriction enzyme mapping of ribosomal DNA can distinguish between fasciolid (liver fluke) species. Molecular and Biochemical Parasitology 36, 201–8.Google Scholar
Curran, J., Baillie, D. L. & Webster, J. M. (1985). Use of genomic DNA restriction fragment length differences to identify nematode species. Parasitology 90, 137–44.CrossRefGoogle Scholar
Gerbi, S. A., Gourse, R. L. & Clark, C. G. (1982). Conserved regions within ribosomal DNA: locations and some possible functions. In The Cell Nucleus Vol. 10, (ed. Busch, & Rothblum, ), pp. 351–86. London: Academic Press.Google Scholar
Hattori, M. & Sakiki, Y. (1986). Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 152, 232–8.CrossRefGoogle ScholarPubMed
Hudson, E. B. & Hill, B. J. (1993). EC Directive 91/67/EEC and its relevance to disease in wild salmonids. Fisheries Research 17, 229–36.CrossRefGoogle Scholar
Johnsen, B. O. & Jensen, A. J. (1991). The Gyrodactylus story in Norway. Aquaculture 98, 289302.CrossRefGoogle Scholar
Johnston, D. J., Kane, R. A. & Rollinson, D. (1993). Small subunit (18S) ribosomal RNA gene divergence in the genus Schistosoma. Parasitology 107, 147–56.Google Scholar
Lumb, S. M., Bray, R. A. & Rollinson, D. (1993). Partial small subunit (18S) rRNA gene sequences from fish parasites of the families Lepocreadiidae and Fellodistomidae (Digenea) and their use in phylogenetic analyses. Systematic Parasitology 26, 141–9.CrossRefGoogle Scholar
Malmberg, G. (1957). Om forekomsten av Gyrodactylus pa svenska fiskar. (Species description and summary in English) Skrifter utgivna av sodra Sveriges Fiskerifovening, Arsskrift, 1976.Google Scholar
Malmberg, G. (1987). Gyrodactylus salaris Malmberg 1957 and G. truttae Gläser 1974–two problematic species. Proceedings of the XIII Symposium of the Scandinavian Society for Parasitology, Helsinki, Finland, 1987, Information, Åbo Akademi 19, 34.Google Scholar
Malmberg, G. (1988). Salmonid transports, culturing and Gyrodactylus infections in Scandinavia. In Parasites of Freshwater Fishes of North–West Europe, pp. 88104. Zoological Institute, USSR Academy of Sciences International Symposium 10–14 01 1988.Google Scholar
Malmberg, G. & Malmberg, M. (1993). Species of Gyrodactylus (Platyhelminthes, Monogenea) on salmonids in Sweden. Fisheries Research 17, 5968.CrossRefGoogle Scholar
Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–9.CrossRefGoogle ScholarPubMed
Mo, T. A. (1991 a). Seasonal variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidea) on parr of the Atlantic salmon Salmo salar L. in the River Batnfjordselva, Norway. Systematic Parasitology 19, 231–40.Google Scholar
Mo, T. A. (1991 b). Variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidea) on rainbow trout Onorhynchus mykiss (Walbaum, 1792) in a fish farm, with comments on the spreading of the parasite in south-eastern Norway. Systematic Parasitology 20, 19.Google Scholar
Mo, T. A. (1994). Status of Gyrodactylus salaris problems and research in Norway. In Parasitic Disease of Fish (ed. Pike, A. W. & Lewis, J. W.) pp. 4356. Tresaith: Samara Publishing.Google Scholar
Ali, P. Omer, Simpson, A. J. G., Allen, R., Waters, A. P., Humphries, C. J., Johnston, D. A. & Rollinson, D. (1991). Sequence of a small subunit rRNA gene of Schistosoma mansoni and its use in phylogenetic analysis. Molecular and Biochemical Parasitology 46, 201–8.Google Scholar
Shinn, A. P., Sommerville, C. & Gibson, D. I. (1995). Distribution and characterization of species of Gyrodactylus Nordmann, 1832 (Monogenea) parasitizing salmonids in the UK, and their discrimination from G. salaris Malmberg, 1957. Journal of Natural History (in the Press).CrossRefGoogle Scholar
Sogin, M. L. & Gunderson, J. H. (1987). Structural diversity of eukaryotic small subunit ribosomal RNAs: evolutionary implications. Endocytobiology III. Annals of the New York Academy of Sciences 503, 125–39.Google Scholar
Waters, A. P. & McCutchan, T. F. (1989). Rapid, sensitive diagnosis of malaria based on ribosomal RNA. Lancet 1 (8651), 1343–6.CrossRefGoogle ScholarPubMed
Wilson, S. M. (1991). Nucleic acid techniques and the detection of parasitic diseases. Parasitology Today 7, 255–9.CrossRefGoogle ScholarPubMed
Zarlenga, D. S., Stringfellow, F., Nobary, M. & Lichtenfels, J. R. (1994). Cloning and characterisation of ribosomal RNA genes from three species of Haemonchus. (Nematoda: Trichostrongyloidea) and identification of PCR primers for rapid differentiation. Experimental Parasitology 78, 2836.CrossRefGoogle ScholarPubMed