Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-z9m8x Total loading time: 0.469 Render date: 2022-09-30T23:12:13.815Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

The incongruence of nuclear and mitochondrial DNA variation supports conspecificity of the monogenean parasites Gyrodactylus salaris and G. thymalli

Published online by Cambridge University Press:  27 July 2006

H. HANSEN
Affiliation:
Natural History Museum, Department for Zoology, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
L. MARTINSEN
Affiliation:
Natural History Museum, Department for Zoology, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
T. A. BAKKE
Affiliation:
Natural History Museum, Department for Zoology, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
L. BACHMANN
Affiliation:
Natural History Museum, Department for Zoology, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway

Abstract

The monogenean Gyrodactylus salaris Malmberg, 1957 is an economically important parasite on Atlantic salmon whereas the morphologically very similar G. thymalli Žitňan, 1960 on grayling is considered harmless. Even molecular markers cannot unambiguously discriminate both species. The nuclear internal transcribed spacer (ITS) sequences are identical in both species, and although mitochondrial cytochrome oxidase I (COI) sequences show substantial variation, no support for monophyly of either species is found. Analysis of nucleotide sequences of the intergenic spacer (IGS) have, however, been interpreted as support for 2 species. Here, IGS and COI sequences from 81 G. salaris and G. thymalli specimens of 39 populations across the species' distribution range were determined. Mitochondrial diversity was not reflected in the nuclear marker. Since various 23 bp IGS repeat types usually differ by just one nucleotide and sequences primarily differ in the number and order of repeat types, alignments may be biased and arbitrary, impeding meaningful phylogenetic analyses. The hypothesis that parasites on rainbow trout represent hybrids of both species is rejected. The presence or absence of particular repeat types is not considered informative. We interpret the IGS data as support for G. salaris and G. thymalli being a single species.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakke, T. A., Harris, P. D. and Cable, J. ( 2002). Host specificity dynamics: observations on gyrodactylid monogeneans. International Journal for Parasitology 32, 281308. DOI:10.1016/S0020-7519(01)00331-9.CrossRefGoogle Scholar
Bakke, T. A., Jansen, P. A. and Hansen, L. P. ( 1990). Differences in the host resistance of Atlantic salmon, Salmo salar L., stocks to the monogenean Gyrodactylus salaris Malmberg, 1957. Journal of Fish Biology 37, 577587. DOI:10.1111/j.1095-8649.1990.tb05890.x.CrossRefGoogle Scholar
Bakke, T. A., Jansen, P. A. and Harris, P. D. ( 1996). Differences in susceptibility of anadromous and resident stocks of Arctic charr to infections of Gyrodactylus salaris under experimental conditions. Journal of Fish Biology 49, 341351.CrossRefGoogle Scholar
Buchmann, K., Lindenstrøm, T., Nielsen, M. E. and Bresciani, J. ( 2000). Diagnostik og forekomst af ektoparasitinfeksjoner (Gyrodactylus spp.) hos danske laksefisk. Dansk Veterinærtidskrift 83, 1519 (In Danish).Google Scholar
Collins, C. M. and Cunningham, C. O. ( 2000). Characterization of the Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes: Monogenea) ribosomal intergenic spacer (IGS) DNA. Parasitology 121, 555563. DOI:10.1017/S0031182099006770.CrossRefGoogle Scholar
Cunningham, C. O., Collins, C. M., Malmberg, G. and Mo, T. A. ( 2003). Analysis of ribosomal RNA intergenic spacer (IGS) sequences in species and populations of Gyrodactylus (Platyhelminthes: Monogenea) from salmonid fish in northern Europe. Diseases of Aquatic Organisms 57, 237246.CrossRefGoogle Scholar
Cunningham, C. O., Mo, T. A., Collins, C. M., Buchmann, K., Thiery, R., Blanc, G. and Lautraite, A. ( 2001). Redescription of Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel & Vigneulle, 1999 (Monogenea: Gyrodactylidae); a species identified by ribosomal RNA sequence. Systematic Parasitology 48, 141150.CrossRefGoogle Scholar
Dover, G. A. ( 1982). Molecular drive: a cohesive mode of species evolution. Nature, London 299, 111116.CrossRefGoogle Scholar
Ergens, R. ( 1983). Gyrodactylus from Eurasian freshwater Salmonidae and Thymallidae. Folia Parasitologica 30, 1526.Google Scholar
Hansen, H., Bachmann, L. and Bakke, T. A. ( 2003). Mitochondrial DNA variation of Gyrodactylus spp. (Monogenea, Gyrodactylidae) populations infecting Atlantic salmon, grayling and rainbow trout in Norway and Sweden. International Journal for Parasitology 33, 14711478. DOI:10.1016/S0020-7519(03)00200-5.CrossRefGoogle Scholar
Johnsen, B. O. and Jensen, A. J. ( 1991). The Gyrodactylus story in Norway. Aquaculture 98, 289302. DOI:10.1016/0044-8486(91)90393-L.CrossRefGoogle Scholar
Johnsen, B. O., Møkkelgjerd, P. I. and Jensen, A. J. ( 1999). Parasitten Gyrodactylus salaris på laks i norske vassdrag, statusrapport ved inngangen til år 2000. In NINA Oppdragsmelding Vol. 617 pp. 1129 (In Norwegian).
Kimura, M. ( 1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle Scholar
Koski, P. and Malmberg, G. ( 1995). Occurrence of Gyrodactylus (Monogenea) on salmon and rainbow trout in fish farms in Northern Finland. Bulletin of the Scandinavian Society for Parasitology 5, 7688.Google Scholar
Koskinen, M. T., Ranta, E., Piironen, J., Veselov, A., Titov, S., Haugen, T. O., Nilsson, J., Carlstein, M. and Primmer, C. R. ( 2000). Genetic lineages and postglacial colonization of grayling (Thymallus thymallus, Salmonidae) in Europe, as revealed by mitochondrial DNA analyses. Molecular Ecology 9, 16091624. DOI:10.1046/j.1365-294x.2000.01065.x.CrossRefGoogle Scholar
Kumar, S., Tamura, K. and Nei, M. ( 2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150163. DOI:10.1093/bib/5.2.150.CrossRefGoogle Scholar
Lindenstrøm, T., Collins, C. M., Bresciani, J., Cunningham, C. O. and Buchmann, K. ( 2003). Characterization of a Gyrodactylus salaris variant: infection biology, morphology and molecular genetics. Parasitology 127, 165177. DOI:10.1017/S003118200300341X.CrossRefGoogle Scholar
Malmberg, G. ( 1957). Om förekomsten av Gyrodactylus på svenska fiskar, Skrifter utgivna av Södra Sveriges Fiskeriförening, Årsskrift (1957).
Malmberg, G. and Malmberg, M. ( 1993). Species of Gyrodactylus (Platyhelminthes, Monogenea) on salmonids in Sweden. Fisheries Research 17, 5968. DOI:10.1016/0165-7836(93)90007-T.CrossRefGoogle Scholar
Matejusová, I., Gelnar, M., Mcbeath, A. J. A., Collins, C. M. and Cunningham, C. O. ( 2001). Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). International Journal for Parasitology 31, 738745. DOI:10.1016/S0020-7519(01)00176-X.CrossRefGoogle Scholar
McHugh, E. S., Shinn, A. P. and Kay, J. W. ( 2000). Discrimination of the notifiable pathogen Gyrodactylus salaris from G. thymalli (Monogenea) using statistical classifiers applied to morphometric data. Parasitology 121, 315323. DOI:10.1017/S0031182099006381.CrossRefGoogle Scholar
Meinilä, M., Kuusela, J., Ziętara, M. S. and Lumme, J. ( 2002). Primers for amplifying ~820 bp of highly polymorphic mitochondrial COI gene of Gyrodactylus salaris. Hereditas 137, 7274. DOI:10.1034/j.1601-5223.2002.1370110.x.CrossRefGoogle Scholar
Meinilä, M., Kuusela, J., Ziętara, M. S. and Lumme, J. ( 2004). Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). International Journal for Parasitology 34, 515526. DOI:10.1016/j.ijpara.2003.12.002.CrossRefGoogle Scholar
Schneider, S., Roessli, D. and Excoffier, L. ( 2000). Arlequin: a Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva.
Shinn, A. P., Gibson, D. I. and Sommerville, C. ( 2001). Morphometric discrimination of Gyrodactylus salaris Malmberg (Monogenea) from species of Gyrodactylus parasitising British salmonids using novel parameters. Journal of Fish Diseases 24, 8397. DOI:10.1046/j.1365-2761.2001.00272.x.CrossRefGoogle Scholar
Shinn, A. P., Hansen, H., Olstad, K., Bachmann, L. and Bakke, T. A. ( 2004). The use of morphometric characters to discriminate specimens of laboratory-reared and wild populations of Gyrodactylus salaris and G. thymalli (Monogenea). Folia Parasitologica 51, 239252.CrossRefGoogle Scholar
Shinn, A. P., Kay, J. W. and Sommerville, C. ( 2000). The use of statistical classifiers for the discrimination of species of the genus Gyrodactylus (Monogenea) parasitizing salmonids. Parasitology 120, 261269. DOI:10.1017/S0031182099005454.CrossRefGoogle Scholar
Soleng, A. and Bakke, T. A. ( 2001). The susceptibility of grayling, Thymallus thymallus to experimental infections with the monogenean Gyrodactylus salaris. International Journal for Parasitology 31, 793797. DOI:10.1016/S0020-7519(01)00188-6.CrossRefGoogle Scholar
Sterud, E., Mo, T. A., Collins, C. M. and Cunningham, C. O. ( 2002). The use of host specificity, pathogenicity, and molecular markers to differentiate between Gyrodactylus salaris Malmberg, 1957 and G. thymalli Žitňan, 1960 (Monogenea: Gyrodactylidae). Parasitology 124, 203213. DOI:10.1017/S0031182001001044.CrossRefGoogle Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. ( 1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882. DOI:doi:10.1093/nar/25.24.4876.CrossRefGoogle Scholar
Weiss, S., Persat, H., Eppe, R., Schlötterer, C. and Uiblein, F. ( 2002). Complex patterns of colonization and refugia revealed for European grayling Thymallus thymallus, based on complete sequencing of the mitochondrial DNA control region. Molecular Ecology 11, 13931407. DOI:10.1046/j.-1365-294X.2002.01544.x.CrossRefGoogle Scholar
Zentgraf, U., Ganal, M. and Hemleben, V. ( 1990). Length heterogeneity of the rRNA precursor in cucumber (Cucumis sativus). Plant Molecular Biology 15, 465474. DOI:10.1007/BF00019163.CrossRefGoogle Scholar
Zentgraf, U. and Hemleben, V. ( 1992). Complex formation of nuclear proteins with the RNA polymerase I promoter and repeated elements in the external transcribed spacer of Cucumis sativus ribosomal DNA. Nucleic Acids Research 20, 36853691. DOI:10.1093/nar/20.14.3693.CrossRefGoogle Scholar
Ziętara, M. S., Huyse, T., Lumme, J. and Volckaert, F. A. M. ( 2002). Deep divergence among subgenera of Gyrodactylus inferred from rDNA ITS region. Parasitology 124, 3952. DOI:10.1017/S0031182001008939.CrossRefGoogle Scholar
Ziętara, M. S. and Lumme, J. ( 2002). Speciation by host switch and adaptive radiation in a fish parasite genus Gyrodactylus (Monogenea: Gyrodactylidae). Evolution 56, 24452458. DOI:10.1554/0014-3820(2002)056[2445:SBHSAA]2.0.CO;2.CrossRefGoogle Scholar
Ziętara, M. S. and Lumme, J. ( 2004). Comparison of molecular phylogeny and morphological systematics in fish parasite genus Gyrodactylus Nordmann, 1832 (Monogenea, Gyrodactylidae). Zoologica Poloniae 49, 528.Google Scholar
Žitňan, R. ( 1960). Gyrodactylus thymalli sp. nov. aus den Flossen der Äsche (Thymallus thymallus). Helminthologia 2, 266269 (In German, English summary).Google Scholar
30
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The incongruence of nuclear and mitochondrial DNA variation supports conspecificity of the monogenean parasites Gyrodactylus salaris and G. thymalli
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The incongruence of nuclear and mitochondrial DNA variation supports conspecificity of the monogenean parasites Gyrodactylus salaris and G. thymalli
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The incongruence of nuclear and mitochondrial DNA variation supports conspecificity of the monogenean parasites Gyrodactylus salaris and G. thymalli
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *