Hostname: page-component-5d59c44645-mrcq8 Total loading time: 0 Render date: 2024-02-29T14:49:04.963Z Has data issue: false hasContentIssue false

Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators

Published online by Cambridge University Press:  27 March 2008

N. KALDONSKI
Affiliation:
Université de Bourgogne, UMR CNRS 5561 Biogéocsciences, Dijon, France
M.-J. PERROT-MINNOT
Affiliation:
Université de Bourgogne, UMR CNRS 5561 Biogéocsciences, Dijon, France
S. MOTREUIL
Affiliation:
Université de Bourgogne, UMR CNRS 5561 Biogéocsciences, Dijon, France
F. CÉZILLY*
Affiliation:
Université de Bourgogne, UMR CNRS 5561 Biogéocsciences, Dijon, France
*
*Corresponding author: Equipe Ecologie Evolutive, UMR CNRS 5561 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France. E-mail: frank.cezilly@u-bourgogne.fr

Summary

Phenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Åbjörnsson, K., Dahl, J., Nyström, P. and Brönmark, C. (2000). Influence of predator and dietary chemical cues on the behaviour and shredding efficiency of Gammarus pulex. Aquatic Ecology 34, 379387.Google Scholar
Bakker, T. C. M., Mazzi, D. and Zala, S. (1997). Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78, 10981104.Google Scholar
Baldauf, S. A., Thünken, T., Frommen, J. G., Bakker, T. C. M., Heupzl, O. and Kullmann, H. (2007). Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odour. International Journal for Parasitology 37, 6165.Google Scholar
Bethel, W. M. and Holmes, J. C. (1977). Increased vulnerability of amphipods to predation owing to altered behavior induced by larval acanthocephalans. Canadian Journal of Zoology 55, 110115.Google Scholar
Cézilly, F., Grégoire, A. and Bertin, A. (2000). Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120, 625630.Google Scholar
Cézilly, F. and Perrot-Minnot, M. J. (2005). Studying adaptive changes in the behaviour of infected hosts: a long and winding road. Behavioural Processes 68, 223228.Google Scholar
Chesson, J. (1978). Measuring preference in selective predation. Ecology 59, 211215.Google Scholar
Choisy, M., Brown, S. P., Lafferty, K. D. and Thomas, F. (2003). Evolution of trophic transmission in parasites: Why add intermediate hosts? American Naturalist 162, 172181.Google Scholar
Corona, A., Soto, L. A. and Sanchez, A. J. (2000). Epibenthic amphipod abundance and predation efficiency of the pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939) in habitats with different physical complexity in a tropical estuarine system. Journal of Experimental Marine Biology and Ecology 253, 3348.Google Scholar
Crawford, L., Yeomans, W. E. and Adams, C. E. (2006). The impact of introduced signal crayfish Pacifastacus leniusculus on stream invertebrate communities. Aquatic Conservation: Marine and Freshwater Ecosystems 16, 611621.Google Scholar
Dawkins, R. (1982). The Extended Phenotype, Oxford University Press, Oxford.Google Scholar
Dezfuli, B. S., Maynard, B. J. and Wellnitz, T. A. (2003). Activity levels and predator detection by amphipods infected with an acanthocephalan parasite, Pomphorhynchus laevis. Folia Parasitologica 50, 129134.Google Scholar
Dick, J. T. A. and Platvoet, D. (1996). Intraguild predation and species exclusions in amphipods: The interaction of behaviour, physiology and environment. Freshwater Biology 36, 375383.Google Scholar
Duffy, M. A., Hall, S. R., Tessier, A. J. and Huebner, M. (2005). Selective predators and their parasitized prey: Are epidemics in zooplankton under top-down control? Limnology and Oceanography 50, 412420.Google Scholar
Elliott, J. M. (2005). Day-night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony stream. Freshwater Biology 50, 552566.Google Scholar
Fenton, A. and Rands, S. A. (2006). The impact of parasite manipulation and predator foraging behavior on predator-prey communities. Ecology 87, 28322841.Google Scholar
Fullick, T. G. and Greenwood, J. J. D. (1979). Frequency-dependent food selection in relation to 2 models. American Naturalist 113, 762765.Google Scholar
Griffen, B. D. and Byers, J. E. (2006). Intraguild predation reduces redundancy of predator species in multiple predator assemblage. Journal of Animal Ecology 75, 959966.Google Scholar
Holmlund, M. B., Peterson, C. H. and Hay, M. E. (1990). Does algal morphology affect amphipod susceptibility to fish predation. Journal of Experimental Marine Biology and Ecology 139, 6583.Google Scholar
Hynes, H. B. N. (1954). The ecology of Gammarus duebeni lilljeborg and its occurence in fresh water in western Britain. Journal of Animal Ecology 23, 3884.Google Scholar
Kaldonski, N., Perrot-Minnot, M. J. and Cézilly, F. (2007). Differential influence of two acanthocephalan parasites on the anti-predator behaviour of their common intermediate host. Animal Behaviour 74, 13111317.Google Scholar
Lafferty, K. D. (1992). Foraging on prey that are modified by parasites. American Naturalist 140, 854867.Google Scholar
Lafferty, K. D. and Morris, A. K. (1996). Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 13901397.Google Scholar
Lagrue, C., Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S. and Bollache, L. (2007). Modification of hosts' behavior by a parasite: field evidence for adaptive manipulation. Ecology 88, 28392847.Google Scholar
MacNeil, C., Dick, J. T. A. and Elwood, R. W. (1999). The dynamics of predation on Gammarus spp. (Crustacea: Amphipoda). Biological Reviews 74, 375395.Google Scholar
Maltby, L., Clayton, S. A., Wood, R. M. and McLoughlin, N. (2002). Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environmental Toxicology and Chemistry 21, 361368.Google Scholar
Manly, B. F. J. (1974). A model for certain types of selection experiments. Biometrics 30, 281294.Google Scholar
Marriott, D. R., Collins, M. L., Paris, R. M., Gudgin, D. R., Barnard, C. J., Mcgregor, P. K., Gilbert, F. S., Hartley, J. C. and Behnke, J. M. (1989). Behavioral modifications and increased predation risk of Gammarus pulex infected with Polymorphus minutus. Journal of Biological Education 23, 135141.Google Scholar
McCafferty, W. (1981). Aquatic Entomology. Science Books International, Boston.Google Scholar
Moore, J. (2002). Parasites and the Behavior of Animals, Oxford University Press, New York.Google Scholar
Mouritsen, K. N. and Poulin, R. (2003). Parasite-induced trophic facilitation exploited by a non-host predator: a manipulator's nightmare. International Journal for Parasitology 33, 10431050.Google Scholar
Ness, J. H. and Foster, S. A. (1999). Parasite-associated phenotype modifications in threespine stickleback. Oikos 85, 127134.Google Scholar
Nickol, B. B., Fuller, C. A. and Rock, P. (2006). Cystacanths of Oncicola venezuelensis (Acanthocephala: Oligacanthorhynchidae) in Caribbean termites and various paratenic hosts in the US Virgin Islands. Journal of Parasitology 92, 539542.Google Scholar
Nilsson, P. A., Nilsson, K. and Nystrom, P. (2000). Does risk of intraspecific interactions induce shifts in prey-size preference in aquatic predators? Behavioral Ecology and Sociobiology 48, 268275.Google Scholar
Ohba, S. and Nakasuji, F. (2006). Dietary items of predacious aquatic bugs (Nepoidea: Heteroptera) in Japanese wetlands. Limnology 7, 4143.Google Scholar
Perrot-Minnot, M.-J., Kaldonski, N. and Cézilly, F. (2007). Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected host. International Journal for Parasitology 37, 645651.Google Scholar
Poulin, R. (1995). “Adaptive” changes in the behaviour of parasitized animals: a critical review. International Journal for Parasitology 25, 13711383.Google Scholar
Poulin, R., Fredensborg, B. L., Hansen, E. and Leung, T. L. F. (2005). The true cost of host manipulation by parasites. Behavioural Processes 68, 241244.Google Scholar
Redmond, M. S. and Scott, K. J. (1989). Amphipod predation by the infaunal polychaete, Nephtys incisa. Estuaries 12, 205207.Google Scholar
Runck, C. and Blinn, D. W. (1994). Role of Belostoma bakeri (Heteroptera) in the trophic ecology of a fishless desert spring. Limnology and Oceanography 39, 18001812.Google Scholar
Seppälä, O., Karvonen, A. and Valtonen, E. T. (2006 a). Host manipulation by parasites and risk of non-host predation: is manipulation costly in an eye fluke-fish interaction? Evolutionary Ecology Research 8, 871879.Google Scholar
Seppälä, O., Karvonen, A. and Valtonen, E. T. (2006 b). Susceptibility of eye fluke-infected fish to predation by bird hosts. Parasitology 132, 575579.Google Scholar
Sokal, E. R. and Rohlf, F. J. (1995). Biometry, 3rd Edn.W.H. Freeman, New-York.Google Scholar
Stewart, T. W., Miner, J. G. and Lowe, R. L. (1998). An experimental analysis of crayfish (Orconectes rusticus) effects on a Dreissena-dominated benthic macroinvertebrate community in western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 55, 10431050.Google Scholar
Tain, L., Perrot-Minnot, M.-J. and Cézilly, F. (2006). Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity. Proceedings of the Royal Society of London, B 273, 30393045.Google Scholar
Thomas, F., Adamo, S. and Moore, J. (2005). Parasitic manipulation: where are we and where should we go? Behavioural Processes 68, 185199.Google Scholar
Vance, S. A. and Peckarsky, B. L. (1997). The effect of mermithid parasitism on predation of nymphal Baetis bicaudatus (Ephemeroptera) by invertebrates. Oecologia 110, 147152.Google Scholar
Wilhelm, F. M., Hamann, J. and Burns, C. W. (2002). Mysid predation on amphipods and Daphnia in a shallow coastal lake: prey selection and effects of macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 59, 19011907.Google Scholar