Hostname: page-component-cd4964975-8tfrx Total loading time: 0 Render date: 2023-04-02T06:08:15.839Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific?

Published online by Cambridge University Press:  06 April 2009

M. Berdoy
Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS
J. P. Webster
Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS
D. W. Macdonald
Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS


The effect of Toxoplasma gondii on rat behaviour was assessed in a colony of 36 free-ranging wild/laboratory hybrid rats allowed to compete freely for food and mates in a (100 m2) outdoor naturalistic enclosure. T. gondii infection had no effect on social status or mating success, both the product of costly and competitive activities. However, the propensity to explore novel stimuli in their environment was higher in infected than uninfected individuals. These results are consistent with the hypothesis that T. gondii only affects the behavioural traits which selectively benefit the parasite, rather than causing a general alteration of rat behaviour.

Research Article
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Adams, N. & Boice, R. (1983). A longitudinal study of dominance in an outdoor colony of domestic rats. Journal of Comparative Psychology 97, 2433.CrossRefGoogle Scholar
Appleby, M. C. (1983). The probability of linearity in hierarchies. Animal Behaviour 31, 600–8.CrossRefGoogle Scholar
Berdoy, M. (1994). Making decisions in the wild: constraints, conflicts and communication in foraging wild rats. In Behavioral Aspects of Feeding (ed. Galef, B. G. Jr., Mainardi, M. & Valsechi, P.), pp. 289313. London: Harwood Academic Publishers.Google Scholar
Berdoy, M. & Macdonald, D. W. (1991). Factors affecting feeding in wild rats. Acta Oecologica 12, 261–79.Google Scholar
Berdoy, M., Smith, P. & Macdonald, D. W. (1995). Stability of social status in wild rat colonies: age and the role of settled dominance. Behaviour 132, 193212.CrossRefGoogle Scholar
Calhoun, J. B. (1962). The Ecology and Sociology of the Norway Rat. U.S. Department of Health, Education and Welfare, P.H.S. no. 1008. Bethesda, Maryland.Google Scholar
Clutton-Brock, T. H., Albon, S. D., Gibson, R. M. & Guinness, F. E. (1979). The logical stag: adaptive aspects of fighting in red deer (Cervus elaphus L). Animal Behaviour 27, 211–25.CrossRefGoogle Scholar
Dessi-Fulgheri, F., Lucarini, N. & Prisco, C. Lupo Di (1976). Relationships between testosterone metabolism in the brain, other endocrine variables and intermale aggression in mice. Aggressive Behaviour 2, 223–31.3.0.CO;2-0>CrossRefGoogle Scholar
Freeland, W. J. (1981). Parasitism and behavioural dominance among male mice. Science 213, 461–2.CrossRefGoogle ScholarPubMed
Frenkel, J. K. (1972). Toxoplasmosis. In Pathology of the Nervous System, Vol. 3 (ed. Minckler, J.), pp. 25212538. New York: McGraw Hill.Google Scholar
Hay, J., Aitken, P. P., Hutchison, W. M & Graham, D. I. (1983). The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Annals of Tropical Medicine and Parasitology 77, 483–95.CrossRefGoogle ScholarPubMed
Hay, J., Aitken, P. P., Hair, D. M., Hutchison, W. M. & Graham, D. I. (1984). The effect of congenital Toxoplasma infection on mouse activity and relative preference for exposed areas over a series of trials. Annals of Tropical Medicine and Parasitology 78, 611–118.CrossRefGoogle Scholar
Hutchison, W. M., Dunachie, J. F., Siim, J. Chr. & Work, K. (1969). The life cycle of Toxoplasma gondii. British Medical Journal 4, 806.CrossRefGoogle ScholarPubMed
King, C. M. (1984). Immigrant Killers: Introduced Predators and the Conservation of Birds in New Zealand. London: Oxford University Press.Google Scholar
Leyhausen, P. (1979). Cat Behaviour: the Predatory and Social Behaviour of Domestic and Wild Cats. New York, London: Garland Series in Ethology, Garland S.T.P.M. Press.Google Scholar
McClintock, M. K., Anisko, J. J. & Adler, N. T. (1982). Group mating among Norway rats II. The social dynamics of copulation: competition and cooperation and mate choice. Animal Behaviour 30, 410–25.CrossRefGoogle Scholar
Mitchell, D. (1976). Experiments of neophobia in wild and laboratory rats: a revaluation. Journal of Comparative Physiological Psychology 90, 190–7.CrossRefGoogle Scholar
Moore, J. & Gottelli, N. J. (1990). A phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In Parasitism and Host Behaviour (ed. Barnard, C. J. & Behnke, J. M.), pp. 193223. London: Taylor & Francis.Google Scholar
Ostlind, D. A., Nartowicz, M. A. & Mickle, W. G. (1985). Efficacy of ivermectin against Syphacia obvelata (Nematoda) in mice. Journal of Helminthology 59, 257–61.CrossRefGoogle ScholarPubMed
Rau, M. E. (1983). Establishment and maintenance of behavioural dominance in male mice infected with Trichinella spiralis. Parasitology 86, 319–22.CrossRefGoogle ScholarPubMed
Rau, M. E. (1984). Loss of behavioural dominance in male mice infected with Trichinella spiralis. Parasitology 88, 371–3.CrossRefGoogle ScholarPubMed
Sachser, N. & Prove, E. (1986). Social status and plasma-testosterone titres in male guinea pigs (Cavia aperea f. porcellus). Ethology 71, 103–14.CrossRefGoogle Scholar
SAS Institute Inc. (1988) SAS/STAT™ User';s Guide, Release 6·03 Edition. Gary, NC, USA: SAS Institute.Google Scholar
Schuurman, T. (1980). Hormonal correlates of agonistic behaviour in adult male rats. Progress in Brain Research 53, 415–20.CrossRefGoogle ScholarPubMed
Stokkan, K. A., Hove, K. & Carr, W. R. (1980). Plasma concentrations of testosterone and luteinizing hormone in rutting reindeer bulls (Rangifer tarandus). Canadian Journal of Zoology 58, 2081–3.CrossRefGoogle Scholar
Tsubota, N., Hiraoka, K., Sawada, Y., Ohshima, S. & Ohshima, M. (1977). Studies on latex agglutination test for toxoplasmosis; Evaluation of the microtiter test as a serological test for toxoplasmosis in some animals. Japanese Journal of Parasitology 26, 291.Google Scholar
Voller, A., Bidwell, D. E. & Bartlett, A. (1976). Enzyme immunosorbent assay in diagnostic medicine; Theory and Practice. Bulletin of the Worth Health Organization 53, 5565.Google Scholar
Webster, J. P. (1994 a). Prevalence and transmission of Toxoplasma gondii in wild brown rats, Rattus norvegicus. Parasitology 108, 407–11.CrossRefGoogle ScholarPubMed
Webster, J. P. (1994 b). The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology 109, 583–9.CrossRefGoogle ScholarPubMed
Webster, J. P., Brunton, C. F. A. & Macdonald, D. W. (1994). Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology 109, 3743.CrossRefGoogle ScholarPubMed
Werner, H., Masihi, K. N. & Senk, U. (1981). Latent T. gondii infection as a possible risk factor for CNS disorders. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, I Abteilung Originale A 250, 368–75.Google Scholar