Skip to main content Accessibility help
×
Home

Accurate identification of Australian mosquitoes using protein profiling

  • Andrea L. Lawrence (a1) (a2) (a3), Jana Batovska (a4) (a5), Cameron E. Webb (a1) (a2), Stacey E. Lynch (a4), Mark J. Blacket (a4), Jan Šlapeta (a3), Philippe Parola (a6) and Maureen Laroche (a6)...

Abstract

Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.

Copyright

Corresponding author

Author for correspondence: Maureen Laroche, E-mail: maureen.laroche@univ-amu.fr

References

Hide All
Batovska, J, Blacket, MJ, Brown, K and Lynch, SE (2016) Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecology and Evolution 6, 30013011.
Batovska, J, Lynch, SE, Cogan, NOI, Brown, K, Darbro, JM, Kho, EA and Blacket, MJ (2017) Effective mosquito and arbovirus surveillance using metabarcoding. Molecular Ecology Resources 18, 3240.
Boucheikhchoukh, M, Laroche, M, Aouadi, A, Dib, L, Benakhla, A, Raoult, D and Parola, P (2018) MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comparative Immunology, Microbiology and Infectious Diseases 57, 3949.
Burrow, JNC, Whelan, PI, Kilburn, CJ, Fisher, DA, Currie, BJ and Smith, DW (1998) Australian encephalitis in the Northern Territory: clinical and epidemiological features, 1987–1996. Australian and New Zealand Journal of Medicine 28, 590596.
Claflin, SB and Webb, CE (2015) Ross River virus: many vectors and unusual hosts make for an unpredictable pathogen. PLoS Pathogens 11, e1005070.
Dieme, C, Yssouf, A, Vega-Rúa, A, Berenger, J-M, Failloux, A-B, Raoult, D, Parola, P and Almeras, L (2014) Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasites & Vectors 7, 544.
Dobrotworsky, NV (1965) The Mosquitoes of Victoria (Diptera, Culicidae). Carlton, Victoria, Australia: Melbourne University Press.
Dridi, B, Raoult, D and Drancourt, M (2012) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 120, 8591.
Dvorak, V, Halada, P, Hlavackova, K, Dokianakis, E, Antoniou, M and Volf, P (2014) Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites & Vectors 7, 21.
Endersby, NM, White, VL, Chan, J, Hurst, T, Rašić, G, Miller, A and Hoffmann, AA (2013) Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infection, Genetics and Evolution 18, 191201.
Flaudrops, C, Faye, N, Mediannikov, O, Sokhna, C, Lo, CI, Fall, B, Sambe-Ba, B, Wade, B, Raoult, D, Fenollar, F (2017) Value of matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry in clinical microbiology and infectious diseases in Africa and tropical areas. African Journal of Microbiology Research 11, 13601370.
Flies, EJ, Toi, C, Weinstein, P, Doggett, SL and Williams, CR (2015) Converting mosquito surveillance to arbovirus surveillance with honey-baited nucleic acid preservation cards. Vector-Borne and Zoonotic Diseases 15, 397403.
Foley, DH, Wilkerson, RC, Cooper, RD, Volovsek, ME and Bryan, JH (2007) A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Molecular Phylogenetics and Evolution 43, 283297.
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.
Fonseca, DM, Keyghobadi, N, Malcolm, CA, Mehmet, C, Schaffner, F, Mogi, M, Fleischer, RC and Wilkerson, RC (2004) Emerging vectors in the Culex pipiens complex. Science 303, 15351538.
Hall-Mendelin, S, Pyke, AT, Moore, PR, Mackay, IM, McMahon, JL, Ritchie, SA, Taylor, CT, Moore, FAJ and van den Hurk, AF (2016) Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia. PLoS Neglected Tropical Diseases 10, e0004959.
Harley, D, Sleigh, A and Ritchie, S (2001) Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clinical Microbiology Reviews 14, 909932.
Hoppenheit, A, Murugaiyan, J, Bauer, B, Steuber, S, Clausen, P-H and Roesler, U (2013) Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Neglected Tropical Diseases 7, e2305.
Jacups, SP, Whelan, PI and Currie, BJ (2008) Ross River virus and Barmah Forest virus infections: a review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector-Borne and Zoonotic Diseases 8, 283298.
Jansen, CC and Beebe, NW (2010) The dengue vector Aedes aegypti: what comes next. Microbes and Infection 12, 272279.
Karger, A, Kampen, H, Bettin, B, Dautel, H, Ziller, M, Hoffmann, B, Süss, J and Klaus, C (2012) Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks and Tick-Borne Diseases 3, 7889.
Kassim, NFA, Webb, CE and Russell, RC (2012) Culex molestus Forskal (Diptera: Culicidae) in Australia: colonisation, stenogamy, autogeny, oviposition and larval development. Austral Entomology 51, 6777.
Kaufmann, C, Schaffner, F, Ziegler, D, Pflueger, V and Mathis, A (2012) Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139, 248258.
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P and Drummond, A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 16471649.
La Scola, B, Campocasso, A, N'Dong, R, Fournous, G, Barrassi, L, Flaudrops, C and Raoult, D (2010) Tentative characterization of new environmental giant viruses by MALDI-TOF mass spectrometry. Intervirology 53, 344353.
Laroche, M, Almeras, L, Pecchi, E, Bechah, Y, Raoult, D, Viola, A and Parola, P (2017 a) MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malaria Journal 16, 5.
Laroche, M, Bérenger, J-M, Gazelle, G, Blanchet, D, Raoult, D and Parola, P (2017 b) MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 145, 665675.
Lee, DJ, Hicks, MM, Debenham, ML, Griffiths, M, Marks, EN, Bryan, JH and Russell, RC (1989) The Culicidae of the Australian Region: Volume 7. Canberra, Australia: ACT, Australian Government Printing Service.
Lilja, T, Nylander, JAA, Troell, K and Lindström, A (2017) Species identification of Swedish mosquitoes through DNA metabarcoding. Control Association 35, 19.
Lin, Z and Cai, Z (2018) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. Mass Spectrometry Reviews 37, 681696.
Mackenzie, JS, Lindsay, MD, Coelen, RJ, Broom, AK, Hall, RA and Smith, DW (1994) Arboviruses causing human disease in the Australasian zoogeographic region. Archives of Virology 136, 447467.
Mackenzie, JS, Johansen, CA, Ritchie, SA, Van Den Hurk, AF, Hall, RA (2002) Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. In Mackenzie, JS, Barrett, ADT and Deubel, V (eds) Japanese Encephalitis and West Nile Viruses. Springer, Berlin, Heidelberg, pp. 4973.
Mathis, A, Depaquit, J, Dvořák, V, Tuten, H, Bañuls, A-L, Halada, P, Zapata, S, Lehrter, V, Hlavačková, K, Prudhomme, J, Volf, P, Sereno, D, Kaufmann, C, Pflüger, V and Schaffner, F (2015) Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasites & Vectors 8, 266.
Mewara, A, Sharma, M, Kaura, T, Zaman, K, Yadav, R and Sehgal, R (2018) Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasites & Vectors 11, 281.
Montgomery, BL, Shivas, MA, Hall-Mendelin, S, Edwards, J, Hamilton, NA, Jansen, CC, McMahon, JL, Warrilow, D and van den Hurk, AF (2017) Rapid Surveillance for Vector Presence (RSVP): development of a novel system for detecting Aedes aegypti and Aedes albopictus. PLoS Neglected Tropical Diseases 11, e0005505.
Müller, P, Pflüger, V, Wittwer, M, Ziegler, D, Chandre, F, Simard, F and Lengeler, C (2013) Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS ONE 8, e57486.
Nebbak, A, Willcox, AC, Bitam, I, Raoult, D, Parola, P and Almeras, L (2016) Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 16, 31483160.
Nett, RJ, Campbell, GL and Reisen, WK (2008) Potential for the emergence of Japanese encephalitis virus in California. Vector-Borne and Zoonotic Diseases 9, 511517.
Niare, S, Berenger, J-M, Dieme, C, Doumbo, O, Raoult, D, Parola, P and Almeras, L (2016) Identification of blood meal sources in the main African malaria mosquito vector by MALDI-TOF MS. Malaria Journal 15, 115.
Raharimalala, FN, Andrianinarivomanana, TM, Rakotondrasoa, A, Collard, JM and Boyer, S (2017) Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. Medical and Veterinary Entomology 31, 289298.
Ritchie, SA, Van Den Hurk, AF, Zborowski, P, Kerlin, TJ, Banks, D, Walker, JA, Lee, JM, Montgomery, BL, Smith, GA and Pyke, AT (2007) Operational trials of remote mosquito trap systems for Japanese encephalitis virus surveillance in the Torres Strait, Australia. Vector-Borne and Zoonotic Diseases 7, 497506.
Russell, RC (1993) Mosquitoes and Mosquito-Borne Disease in Southeastern Australia. Sydney: University of Sydney Printing Service, NSW.
Russell, RC (1995) Arboviruses and their vectors in Australia: an update on the ecology and epidemiology of some mosquito-borne arboviruses. Review of Medical and Veterinary Entomology (United Kingdom). Department of Medical Entomology, Westmead Hospital and the University of Sydney.
Russell, RC (1996) A colour photo atlas of mosquitoes of southeastern Australia, R.C. Russell, Sydney, Australia.
Ryan, PA and Kay, BH (1999) Vector competence of mosquitoes (Diptera: Culicidae) from Maroochy Shire, Australia, for Barmah Forest virus. Journal of Medical Entomology 36, 856860.
Schaffner, F, Kaufmann, C, Pflüger, V and Mathis, A (2014) Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasites & Vectors 7, 17.
Selvey, LA, Dailey, L, Lindsay, M, Armstrong, P, Tobin, S, Koehler, AP, Markey, PG and Smith, DW (2014) The changing epidemiology of Murray Valley encephalitis in Australia: the 2011 outbreak and a review of the literature. PLoS Neglected Tropical Diseases 8, e2656.
Seng, P, Rolain, J-M, Fournier, PE, La Scola, B, Drancourt, M and Raoult, D (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiology 5, 17331754.
Shaikevich, EV, Vinogradova, EB, Bouattour, A and Gouveia de Almeida, AP (2016) Genetic diversity of Culex pipiens mosquitoes in distinct populations from Europe: contribution of Cx. quinquefasciatus in Mediterranean populations. Parasites & Vectors 9, 47.
Smith, JL and Fonseca, DM (2004) Rapid assays for identification of members of the Culex (culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). The American Journal of Tropical Medicine and Hygiene 70, 339345.
Tompkins, DM and Gleeson, DM (2006) Relationship between avian malaria distribution and an exotic invasive mosquito in New Zealand. Journal of the Royal Society of New Zealand 36, 5162.
Tran, T-N-N, Aboudharam, G, Gardeisen, A, Davoust, B, Bocquet-Appel, J-P, Flaudrops, C, Belghazi, M, Raoult, D and Drancourt, M (2011) Classification of ancient mammal individuals using dental pulp MALDI-TOF MS peptide profiling. PLoS ONE 6, e17319.
van den Hurk, AF, Hall-Mendelin, S, Johansen, CA, Warrilow, D and Ritchie, SA (2012) Evolution of mosquito-based arbovirus surveillance systems in Australia. BioMed Research International 2012, Article ID 325659, 1–8.
van den Hurk, AF, Hall-Mendelin, S, Townsend, M, Kurucz, N, Edwards, J, Ehlers, G, Rodwell, C, Moore, FA, McMahon, JL and Northill, JA (2014) Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations. Vector-Borne and Zoonotic Diseases 14, 6673.
van den Hurk, AF, Nicholson, J, Beebe, NW, Davis, J, Muzari, OM, Russell, RC, Devine, GJ and Ritchie, SA (2016) Ten years of the Tiger: Aedes albopictus presence in Australia since its discovery in the Torres Strait in 2005. One Health 2, 1924.
Webb, CE and Doggett, SL (2016) Exotic mosquito threats require strategic surveillance and response planning. Public Health Research & Practice 26.
Webb, C, Russell, R and Doggett, S (2016) A Guide to Mosquitoes of Australia. CSIRO Publishing, Australia.
Whiteman Noah, K, Goodman Simon, J, Sinclair Bradley, J, Walsh, TIM, Cunningham Andrew, A, Kramer Laura, D and Parker Patricia, G (2005) Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis 147, 844847
Williams, CR, Ritchie, SA and Whelan, PI (2005) Potential distribution of the Asian disease vector Culex gelidus Theobald (Diptera: Culicidae) in Australia and New Zealand: a prediction based on climate suitability. Austral Entomology 44, 425430.
Williams Craig, R, Bader Christie, A, Williams Samantha, R and Whelan Peter, I (2012) Adult mosquito trap sensitivity for detecting exotic mosquito incursions and eradication: a study using EVS traps and the Australian southern saltmarsh mosquito, Aedes camptorhynchus. Journal of Vector Ecology 37, 110116.
Yssouf, A, Flaudrops, C, Drali, R, Kernif, T, Socolovschi, C, Berenger, J-M, Raoult, D and Parola, P (2013 a) Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for rapid identification of tick vectors. Journal of Clinical Microbiology 51, 522528.
Yssouf, A, Socolovschi, C, Flaudrops, C, Ndiath, MO, Sougoufara, S, Dehecq, J-S, Lacour, G, Berenger, J-M, Sokhna, CS, Raoult, D and Parola, P (2013 b) Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS ONE 8, e72380.
Yssouf, A, Parola, P, Lindström, A, Lilja, T, L'Ambert, G, Bondesson, U, Berenger, J-M, Raoult, D and Almeras, L (2014 a) Identification of European mosquito species by MALDI-TOF MS. Parasitology Research 113, 23752378.
Yssouf, A, Socolovschi, C, Leulmi, H, Kernif, T, Bitam, I, Audoly, G, Almeras, L, Raoult, D and Parola, P (2014 b) Identification of flea species using MALDI-TOF/MS. Comparative Immunology, Microbiology and Infectious Diseases 37, 153157.
Yssouf, A, Almeras, L, Raoult, D and Parola, P (2016) Emerging tools for identification of arthropod vectors. Future Microbiology 11, 549566.

Keywords

Type Description Title
WORD
Supplementary materials

Lawrence et al. supplementary material
Table S1

 Word (142 KB)
142 KB
UNKNOWN
Supplementary materials

Lawrence et al. supplementary material
Lawrence et al. supplementary material 1

 Unknown (39 KB)
39 KB
UNKNOWN
Supplementary materials

Lawrence et al. supplementary material
Lawrence et al. supplementary material 2

 Unknown (17.1 MB)
17.1 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed