Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T01:27:51.373Z Has data issue: false hasContentIssue false

Action of cyclosporin A on the tapeworms Hymenolepis microstoma, H. diminuta and Mesocestoides corti in vivo

Published online by Cambridge University Press:  06 April 2009

L. H. Chappell
Affiliation:
1Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB9 2TN
J. M. Wastling
Affiliation:
1Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB9 2TN
Hilary Hurd
Affiliation:
2Department of Biological Sciences, University of Keele, Keele ST5 5BG

Summary

The in vivo activity of two cyclosporins, cyclosporin A (CsA) and a non-immunosuppressive derivative of dihydrocylosporin A (DHCsA-d) against three tapeworms, Hymenolepis microstoma, H. diminuta and Mesocestoides corti, has been assessed. CsA reversibly reduced the dry weight of H. microstoma in the mouse, briefly delayed oviposition and had a statistically significant effect on worm numbers recovered. Oral and subcutaneous treatments of both CsA and DHCsA-d were effective in reducing worm weight; juvenile worms were most susceptible but worms of all ages responded to drug by a dramatic reduction in weight from which they recovered. Multiple courses of CsA were no more active than single courses of treatment but dose response suggested that a threshold level of drug was necessary to evoke activity. By contrast, H. diminuta in the rat was completely unaffected by CsA but no explanation for the differences in drug response by these two closely related helminths is forthcoming. Mesocestoides corti responded reversibly to CsA in the mouse by a reduction in asexual proliferation of both liver and peritoneal cavity tetrathyridia. The data presented argue in favour of a range of anti-parasitic activities by cyclosporins but the details of the various putative modes of action remain to be defined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldridge, R. D. & Thomson, A. W. (1986). Factors influencing the enhancement of delayed-type hypersensitivity to ovalbumin by cyclosporin A in the guinea pig: possible role of suppressor cells. International Archives of Allergy and Applied Immunology 81, 1723.CrossRefGoogle ScholarPubMed
Behforouz, N. C, Wenger, C. D. & Mathison, B. A. (1986). Prophylactic treatment of BALB/c mice with cyclosporine A and its analog B–5–49 enhances resistance to Leishmania major. Journal of Immunology 136, 3067–75.CrossRefGoogle ScholarPubMed
Belosevic, M., Faubert, G. M. & Maclean, J. D. (1986). The effects of cyclosporin A on the course of infection with Giardia muris in mice. American Journal of Tropical Medicine and Hygiene 35, 496500.CrossRefGoogle ScholarPubMed
Bolas-Fernandez, F., Grencis, R. K. & Wakelin, D. (1988). Cyclosporin A and Trichinella spiralis: anthelmintic effects in immunosuppressed mice. Parasite Immunology 10, 111–16.CrossRefGoogle ScholarPubMed
Bout, D., Deslee, D. & Capron, A. (1984 a). Protection against schistosomiasis produced by cyclosporin A. American Journal of Tropical Medicine and Hygiene 33, 185–6.CrossRefGoogle ScholarPubMed
Bout, D., Deslee, D. & Capron, A. (1986). Antischistosomal effect of Cyclosporin A: cure and prevention of mouse and rat Schistosomiasis mansoni. Infection and Immunity 52, 823–7.CrossRefGoogle ScholarPubMed
Bout, D., Haque, A. & Capron, A. (1984 b). Filaricidal effects of cyclosporin A against Dipetalonema viteae in Mastomys natalensis. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 670–1.CrossRefGoogle ScholarPubMed
Bueding, E., Hawkins, J. & Cha, Y. N. (1981). Antischistosomal effects of Cyclosporin A. Agents and Actions 11, 380–3.CrossRefGoogle ScholarPubMed
Chappell, L. H. & Thomson, A. W. (1988). Studies on the action of Cyclosporine A against Schistosoma mansoni and other parasitic infections. Transplantation Proceedings 20, 239–48.Google ScholarPubMed
Chappell, L. H., Thomson, A. W., Barker, G. C. & Smith, S. W. G. (1987). Dosage, timing, and route of administration of Cyclosporin A and non immunosuppressive derivatives of dihydrocyclosporin A and Cyclosporin C against Schistosoma mansoni in vivo and in vitro. Antimicrobial Agents and Chemotherapy 31, 1567–71.CrossRefGoogle ScholarPubMed
Dixon, B. R. & Arai, H. P. (1985). Isoelectric focussing of soluble proteins in the characterization of three species of Hymenolepis (Cestoda). Canadian Journal of Zoology 63, 1720–3.CrossRefGoogle Scholar
Gleason, L. N. (1971). The responses of the white mouse to a primary infection with Hymenolepis microstoma. Journal of the Elisha Mitchell Scientific Society 87, 1117.Google Scholar
Hofflin, J. M., McCabe, R. E. & Remington, J. S. (1984). In vivo and in vitro effect of Cyclosporin A on Toxoplasma gondii. Federation Proceedings 43, 1770.Google Scholar
Hopkins, C. A., Goodall, R. I. & Zajac, A. (1977). The longevity of Hymenolepis microstoma in mice, and its immunological cross-reaction with Hymenolepis diminuta. Parasitology 74, 175–83.CrossRefGoogle Scholar
Kirkland, T. N. & Fierer, J. (1983). Cyclosporin A inhibits Coccidiodes immitis in vitro and in vivo. Antimicrobial Agents and Chemotherapy 24, 921–4.CrossRefGoogle Scholar
Litchford, R. G. (1963). Observations on Hymenolepis microstoma in three laboratory hosts: Mesocricetus auratus, Mus musculus and Rattus norvegicus. Journal of Parasitology 49, 403–10.CrossRefGoogle Scholar
Lumsden, R. D. & Karin, D. S. (1970). Electron microscopy of the peribiliary connective tissues in mice infected with the tapeworm Hymenolepis microstoma. Journal of Parasitology 56, 1171–83.CrossRefGoogle ScholarPubMed
McCabe, R. E., Remington, J. S. & Araujo, F. G. (1985). In vivo and in vitro effects of Cyclosporin A on Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene 34, 861–5.CrossRefGoogle ScholarPubMed
Mack, D. G. & McLeod, R. (1984). New micromethod to study the effect of antimicrobial agents on Toxoplasma gondii: comparison of sulfadoxine and sulfadiazine individually and in combination with pyrimethamine and study of clindamycin, metronidazole, and Cyclosporin A. Antimicrobial Agents and Chemotherapy 26, 2630.CrossRefGoogle Scholar
Mody, C. H., Toews, G. B. & Lipscomb, M. F. (1988). Cyclosporin A inhibits the growth of Cryptococcus neoformans in a murine model. Infection and Immunity 56, 712.CrossRefGoogle ScholarPubMed
Nickell, S. P., Scheibel, L. W. & Cole, G. A. (1982). Inhibition by Cyclosporin A of rodent malaria in vivo and human malaria in vitro. Infection and Immunity 37, 1093–100.CrossRefGoogle ScholarPubMed
Nilsson, L. A., Lindblad, R., Olling, S. & Ouchterlony, O. (1985). The effect of Cyclosporin A on the course of murine infection by Schistosoma mansoni. Parasite Immunology 7, 1927.CrossRefGoogle ScholarPubMed
Pappas, P. W. (1976). Hymenolepis microstoma: correlation of histopathological host response and organ hypertrophy. Experimental Parasitology 40, 320–9.CrossRefGoogle ScholarPubMed
Pappas, P. W. (1978). Biochemical alterations in organs of mice infected with Hymenolepis microstoma, the mouse bile duct tapeworm. Journal of Parasitology 64, 265–72.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Mayer, L. P. (1976). The effect of transplanted Hymenolepis microstoma, the mouse bile duct tapeworm, on CF-1 mice. Journal of Parasitology 62, 329–32.CrossRefGoogle ScholarPubMed
Sanborn, C. R., Marquardt, W. C. & Duszynski, D. W. (1970). Hymenolepis microstoma: early histopathologic changes in mouse bile duct. Transactions of the American Microscopical Society 89, 274–6.CrossRefGoogle Scholar
Schad, G. A. (1986). Cyclosporine may eliminate the threat of overwhelming strongyloidiasis in immunosuppressed patients. Journal of Infectious Diseases 153, 178.CrossRefGoogle ScholarPubMed
Solbach, W., Forberg, K., Kammerer, E., Bogdan, C. & Rollinghoff, M. (1986). Suppressive effects of Cyclosporin A on the development of Leishmania tropica-induced lesions in genetically susceptible BALB/c mice. Journal of Immunology 137, 702–7.CrossRefGoogle ScholarPubMed
Solbach, W., Forberg, K. & Rollinghoff, M. (1986). Effect of T-lymphocyte suppression on the parasite burden in Leishmania major-infected, genetically susceptible BALB/c mice. Infection and Immunity 54, 909–12.CrossRefGoogle ScholarPubMed
Smith, S. W. G., Chappell, L. H., Thomson, A. W., McGowan, A. G. & Simpson, J. G. (1988). Prophylactic and therapeutic effects of Ciclosporin A in murine Schistosomiasis mansoni: studies on bisexual and unisexual infections and the hepatic inflammatory response. International Archives of Allergy and Applied Immunology 85, 174–9.CrossRefGoogle ScholarPubMed
Specht, D. & Voge, M. (1965). Asexual multiplication of Mesocestoides corti tetrathyridia in laboratory animals. Journal of Parasitology 51, 268–72.CrossRefGoogle Scholar
Specht, D. & Widmer, E. A. (1972). Response of mouse liver to infection with tetrathyridia of Mesocestoides (Cestoda). Journal of Parasitology 58, 431–7.CrossRefGoogle ScholarPubMed
Thomson, A. W. & Chappell, L. H. (1988). Immunophenotypic analysis of blood and spleen lymphocyte subsets in rats protected against schistosomiasis by cyclosporin A. Immunology Letters 17, 169–72.CrossRefGoogle ScholarPubMed
Thompson, A. W., Smith, S. W. G. & Chappell, L. H. (1986). Cyclosporin A: immune suppressant and antiparasitic agent. Parasitology Today 2, 288–90.CrossRefGoogle Scholar
Wenger, R. (1986). Cyclosporine and analogues: structural requirements for immunosuppressive activity. Transplantation Proceedings 18, 213–18.Google ScholarPubMed
Zahner, H. & Schultheiss, K. (1987). Effect of cyclosporin A and some derivatives in Litomosoides carinii-infected Mastomys natalensis. Journal of Helminthology 61, 282–90.CrossRefGoogle ScholarPubMed