Skip to main content Accessibility help
×
×
Home

Besnoitia besnoiti and Toxoplasma gondii: two apicomplexan strategies to manipulate the host cell centrosome and Golgi apparatus

  • RITA CARDOSO (a1) (a2) (a3), SOFIA NOLASCO (a2) (a3) (a4), JOÃO GONÇALVES (a3) (a5), HELDER C. CORTES (a6), ALEXANDRE LEITÃO (a1) (a2) and HELENA SOARES (a3) (a4) (a5)...

Summary

Besnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.

Copyright

Corresponding author

* Corresponding author: IICT, CVZ, CIISA Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-447 Lisboa, Portugal. E-mail: alexandre@fmv.ulisboa.pt
* Corresponding author: Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. E-mail: mhsoares@fc.ul.pt

References

Hide All
Bornens, M. (2008). Organelle positioning and cell polarity. Nature Reviews Molecular Cell Biology 9, 874886. doi: 10.1038/nrm2524.
Bornens, M. (2012). The centrosome in cells and organisms. Science 335, 422426. doi: 10.1126/science.1209037.
Coppens, I., Dunn, J. D., Romano, J. D., Pypaert, M., Zhang, H., Boothroyd, J. C. and Joiner, K. A. (2006). Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125, 261274. doi: 10.1016/j.cell.2006.01.056.
Cortes, H., Reis, Y., Waap, H., Vidal, R., Soares, H., Marques, I., Pereira da Fonseca, I., Fazendeiro, I., Ferreira, M. L., Caeiro, V., Shkap, V., Hemphill, A. and Leitão, A. (2006). Isolation of Besnoitia besnoiti from infected cattle in Portugal. Veterinary Parasitolology 141, 226233. doi: 10.1016/j.vetpar.2006.05.002.
De Anda, F. C., Pollarolo, G., Da Silva, J. S., Camoletto, P. G., Feiguin, F. and Dotti, C. G. (2005). Centrosome localization determines neuronal polarity. Nature 436, 704708. doi: 10.1038/nature03811.
Dupin, I., Camand, E. and Etienne-Manneville, S. (2009). Classical cadherins control nucleus and centrosome position and cell polarity. Journal of Cell Biology 185, 779786. doi: 10.1083/jcb.200812034.
Efimov, A., Kharitonov, A., Efimova, N., Loncarek, J., Miller, P. M., Andreyeva, N., Gleeson, P., Galjart, N., Maia, A. R., McLeod, I. X., Maiato, H., Khodjakov, A., Akhmanova, A. and Kaverina, I. (2007). Asymmetric CLASP-dependent nucleation of non centrosomal microtubules at the trans-Golgi network. Developmental Cell 12, 917930. doi: 10.1016/j.devcel.2007.04.002.
Ellis, J. T., Holmdahl, O. J., Ryce, C., Njenga, J. M., Harper, P. A. and Morrison, D. A. (2000). Molecular phylogeny of Besnoitia and the genetic relationships among Besnoitia of cattle, wildebeest and goats. Protist 151, 329336.
Etienne-Manneville, S. (2008). Polarity proteins in migration and invasion. Oncogene 27, 69706980. doi: 10.1038/onc.2008.347.
European Food Safety Authority (2010). Scientific Statement on Bovine Besnoitiosis. EFSA Journal No. 8. European Food Safety Authority, Parma, Italy.
Gomes, E. R., Jani, S. and Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451463.
Gonçalves, J., Nolasco, S., Nascimento, R., Fanarraga, M., Zabala, J. C. and Soares, H. (2010 a). TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Reports 11, 194200. doi: 10.1038/embor.2010.5.
Gonçalves, J., Tavares, A., Carvalhal, S. and Soares, H. (2010 b). Revisiting the tubulin folding pathways: new roles in centrosomes and cilia. Biomolecular Concepts 1, 423434. doi: 10.1515/bmc.2010.033.
Hurtado, L., Caballero, C., Gavilan, M. P., Cardenas, J., Bornens, M. and Rios, R. M. (2011). Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. Journal of Cell Biology 193, 917933. doi: 10.1083/jcb.201011014.
Innes, E. A. (2010). A brief history and overview of Toxoplasma gondii . Zoonoses and Public Health 57, 17. doi: 10.1111/j.1863-2378.2009.01276.x.
Kodani, A. and Sütterlin, C. (2008). The Golgi protein GM130 regulates centrosome morphology and function. Molecular Biology of the Cell 19, 745753. doi: 10.1091/ mbc.E07-08-0847.
Kodani, A., Kristensen, I., Huang, L. and Sütterlin, C. (2009). GM130-dependent control of Cdc42 activity at the Golgi regulates centrosome organization. Molecular Biology of the Cell 20, 11921200. doi: 10.1091/mbc.E08-08-0834.
Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M. and Barragan, A. (2006). Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cellular Microbiology 8, 16111623. doi: 10.1111/j.1462-5822.2006.00735.x.
Lambert, H., Dellacasa-Lindberg, I. and Barragan, A. (2010). Migratory responses of leukocytes infected with Toxoplasma gondii . Microbes and Infection 13, 96102. doi: 10.1016/j.micinf.2010.10.002.
Luxton, G. W. G. and Gundersen, G. G. (2011). Orientation and function of the nuclear-centrosomal axis during cell migration. Current Opinion in Cell Biology 23, 579588. doi: 10.1016/j.ceb.2011.08.001.
Marcelino, E., Martins, T. M., Morais, J. B., Nolasco, S., Cortes, H., Hemphill, A., Leitão, A. and Novo, C. (2011). Besnoitia besnoiti protein disulfide isomerase (BbPDI): molecular characterization, expression and in silico modelling. Experimental Parasitology 129, 164174. doi: 10.1016/j.exppara.
Miller, P. M., Folkmann, A. W., Maia, A. R., Efimova, N., Efimov, A. and Kaverina, I. (2009). Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nature Cell Biology 11, 10691080. doi: 10.1038/ncb1920.
Pols, J. W. (1960). Studies on bovine besnoitiosis with special reference to the aetiology. Onderstepoort Journal of Veterinary Research 28, 265356.
Pouthas, F., Girard, P., Lecaudey, V., Gilmour, D., Boulin, C., Pepperkok, R. and Reynaud, E. G. (2008). In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. Journal of Cell Science 121, 24062414. doi: 10.1242/jcs.026849.
Reis, Y., Cortes, H., Viseu Melo, L., Fazendeiro, I., Leitão, A. and Soares, H. (2006). Microtubule cytoskeleton behavior in the initial steps of host cell invasion by Besnoitia besnoiti . FEBS Letters 580, 46734682.
Rivero, S., Cardenas, J., Bornens, M. and Rios, R. M. (2009). Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO Journal 28, 10161028. doi: 10.1038/emboj.2009.47.
Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J. and Hutchison, C. J. (2007). A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. Journal of Cell Biology 178, 897904. doi: 10.1083/jcb.200702026.
Schmoranzer, J., Fawcett, J. P., Segura, M., Tan, S., Vallee, R. B., Pawson, T. and Gundersen, G. G. (2009). Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Current Biology 19, 10651074. doi: 10.1016/j.cub.2009.05.065.
Sehgal, A., Bettiol, S., Pypaert, M., Wenk, M. R., Kaasch, A., Blader, I. J., Joiner, K. A. and Coppens, I. (2005). Peculiarities of host cholesterol transport to the unique intracellular vacuole containing Toxoplasma . Traffic 6, 11251141. doi: 10.1111/j.1600-0854.2005.00348.x.
Shaw, M. K., Compton, H. L., Roos, D. S. and Tilney, L. G. (2000). Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii . Journal of Cell Science 113, 12411254.
Sütterlin, C. and Colanzi, A. (2010). The Golgi and the centrosome: building a functional partnership. Journal of Cell Biology 188, 621628. doi: 10.1083/jcb.200910001.
Sweeney, K. R., Morrissette, N. S., LaChapelle, S. and Blader, I. J. (2010). Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton. Eukaryotic Cell 9, 16801689. doi: 10.1128/EC.00079-10.
Thyberg, J. and Moskalewski, S. (1999). Role of microtubules in the organization of the Golgi complex. Experimental Cell Research 246, 263279. doi: 10.1006/ excr.1998.4326.
Vinogradova, T., Miller, P. M. and Kaverina, I. (2009). Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 8, 21682174.
Walker, M. E., Hjort, E. E., Smith, S. S., Tripathi, A., Hornick, J. E., Hinchcliffe, E. H., Archer, W. and Hager, K. M. (2008). Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes and Infection 10, 14401449. doi: 10.1016/j.micinf.2008.08.014.
Wang, Y., Weiss, L. and Orlofsky, A. (2010). Coordinate control of host centrosome position, organelle distribution, and migratory response by Toxoplasma gondii via host mTORC2. Journal of Biological Chemistry 285, 1561115618. doi: 10.1074/jbc.M109.095778.
Weidner, J. M., Kanatani, S., Hernández-Castañeda, M. A., Fuks, J. M., Rethi, B., Wallin, R. P. and Barragan, A. (2013). Rapid cytoskeleton remodelling in dendritic cells following invasion by Toxoplasma gondii coincides with the onset of a hypermigratory phenotype. Cellular Microbiology 15, 17351752. doi: 10.1111/cmi.12145.
Yadav, S., Puri, S. and Linstedt, A. D. (2009). A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Molecular Biology of the Cell 20, 17281736. doi: 10.1091/mbc.E08-10-1077.
Yvon, A. M., Walker, J. W., Danowski, B., Fagerstrom, C., Khodjakov, A. and Wadsworth, P. (2002). Centrosome reorientation in wound-edge cells is cell type specific. Molecular Biology of the Cell 13, 18711880. doi: 10.1091/mbc.01-11-0539.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Cardoso Supplementary Material
Figure S1

 PDF (527 KB)
527 KB
PDF
Supplementary materials

Cardoso Supplementary Material
Figure S2

 PDF (451 KB)
451 KB
PDF
Supplementary materials

Cardoso Supplementary Material
Figure S3

 PDF (477 KB)
477 KB
PDF
Supplementary materials

Cardoso Supplementary Material
Figure S4

 PDF (332 KB)
332 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed