Skip to main content
×
×
Home

Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts

  • GIULIO A. DE LEO (a1), ANDREW P. DOBSON (a2) and MARINO GATTO (a3)
Summary

In this paper we derive from first principles the expected body sizes of the parasite communities that can coexist in a mammal of given body size. We use a mixture of mathematical models and known allometric relationships to examine whether host and parasite life histories constrain the diversity of parasite species that can coexist in the population of any host species. The model consists of one differential equation for each parasite species and a single density-dependent nonlinear equation for the affected host under the assumption of exploitation competition. We derive threshold conditions for the coexistence and competitive exclusion of parasite species using invasion criteria and stability analysis of the resulting equilibria. These results are then used to evaluate the range of parasites species that can invade and establish in a target host and identify the ‘optimal’ size of a parasite species for a host of a given body size; ‘optimal’ is defined as the body size of a parasite species that cannot be outcompeted by any other parasite species. The expected distributions of parasites body sizes in hosts of different sizes are then compared with those observed in empirical studies. Our analysis predicts the relative abundance of parasites of different size that establish in the host and suggests that increasing the ratio of parasite body size to host body size above a minimum threshold increases the persistence of the parasite population.

Copyright
Corresponding author
*Corresponding author: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-1003, USA. E-mail: dobson@princeton.edu
References
Hide All
Anderson, R. M. (1978). The regulation of host population growth by parasite species. Parasitology 76, 119157.
Anderson, R. M. (1986). The population dynamics and epidemiology of intestinal nematode infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 686696.
Anderson, R. M. and May, R. M. (1978). Regulation and stability of host-parasite population interaction. I. Regulatory processes. Journal of Animal Ecology 47, 219247.
Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.
Bailey, G. N. A. (1975). Energetics of a host parasite system: a preliminary report. International Journal for Parasitology: Parasites 5, 609613.
Banavar, J. R., Damuth, J., Maritan, A. and Rinaldo, A. (2002 a). Supply-demand balance and metabolic scaling. Proceedings of the National Academy of Sciences of the United States of America 99, 1050610509.
Banavar, J. R., Damuth, J., Maritan, A. and Rinaldo, A. (2002 b). Modelling universality and scaling. Nature 420, 626.
Berding, C., Keymer, A. E., Murray, J. D. and Slater, A. F. G. (1986). The population dynamics of acquired immunity to helminth infection. Journal of Theoretical Biology 122, 459471.
Bolzoni, L., Gatto, M., Dobson, A. P. and De Leo, G. A. (2008 a). Body-size scaling in an SEI model of wildlife diseases. Theoretical Population Biology 73, 374382.
Bolzoni, L., Gatto, M., Dobson, A. P. and De Leo, G. A. (2008 b). Allometric scaling and seasonality in the epidemics of wildlife diseases. The American Naturalist 172, 818828.
Booth, D. T., Clayton, D. H. and Block, B. A. (1993). Experimental demonstration of the energetic cost of parasitism in free ranging hosts. Proceedings of the Royal Society of London B 253, 125129.
Brose, U., Williams, R. J. and Martinez, N. D. (2006). Allometric scaling enhances stability in complex food webs. Ecology Letters 9, 12281236.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. Ecology 77, 17711789.
Cable, J. M., Enquist, B. J. and Moses, M. E. (2007). The allometry of host pathogen interactions. PLoS ONE 2, e1130.
Calder, W. A. (1984). Size, Function and Life History. Harvard University Press, Cambridge.
Cattadori, I. M., Boag, B., Bjørnstad, O. N., Cornell, S. J. and Hudson, P. J. (2005). Peak shift and epidemiology in a seasonal host-nematode system. Proceedings of the Royal Society B: Biological Sciences 272, 11631169.
Charnov, E. L. (1992). Allometric aspects of population dynamics: a symmetry approach. Evolutionary Ecology 6, 307311.
Charnov, E. L. (1993). Life History Invariants. Oxford University Press, Oxford.
Cohen, J. E., Jonsson, T. and Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the United States of America 100, 17811786.
Cohen, J. E., Jonsson, T., Mƒuller, C. B., Godfray, H. C. J. and Savage, V. M. (2005). Body sizes of hosts and parasitoids in individual feeding relationships. Proceedings of the National Academy of Sciences of the United States of America 102, 684689.
Cornell, S. J., Bjornstad, O. N., Cattadori, I. M., Boag, B. and Hudson, P. J. (2008). Seasonality, cohort-dependence and the development of immunity in a natural host-nematode system. Proceedings of the Royal Society B: Biological Sciences 275, 511518.
Damuth, J. (1981). Population density and body size in mammals. Nature (Lond.) 290, 699700.
De Leo, G. A. and Dobson, A. P. (1996). Allometry and simple epidemic models for macroparasites. Nature 379, 720722.
Diekmann, O. and Kretzschmar, M. (1991). Patterns in the effects of infectious diseases on population growth. Journal of Mathematical Biology 29, 539570.
Diekmann, O., Heesterbeek, J. A. P. and Metz, J. A. J. (1990). On the definition of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28, 365382.
Dobson, A. P. (1985). The population dynamics of competition between parasites. Parasitology 91, 317347.
Dobson, A. P. (1990). Models for multi-species parasite-host communities. In The Structure of Parasite Communities (ed. Esch, G., Kennedy, C. R. and Aho, J.), pp. 261288. Chapman and Hall, London.
Dobson, A. P. and Roberts, M. (1994). The population dynamics of parasitic helminth communities. Parasitology 109 (Suppl.), 97108.
Dobson, A. P., Lafferty, K. D., Kuris, A. M., Hechinger, R. and Jetz, W. (2008). Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences of the United States of America 105 (Suppl. 1), 1148211489.
Dodds, P. S., Rothman, D. H. and Weitz, J. S. (2001). Re-examination of the 3/4-law of metabolism. Journal of Theoretical Biology 209, 927.
Dwyer, G., Levin, S. A. and Buttel, L. (1990). Simulation model of the population dynamics and evolution of myxomatosis. Ecological Monographs 60, 423447.
Economo, E. P., Kerkhoff, A. J. and Enquist, B. J. (2005). Allometric growth, life-history invariants and population energetics. Ecology Letters 8, 353360.
Esch, G. W., Bush, A. O. and Aho, J. M. (1990). Parasite Communities: Patterns and Processes. Chapman and Hall, London.
Fenner, F. (1983). Biological control, as exemplified by smallpox eradication and myxomatosis. Proceedings of the Royal Society of London B 218, 259285.
Gatto, M. and De Leo, G. A. (1998). Interspecific competition among macroparasites in a density-dependent host population. Journal of Mathematical Biology 37, 467490.
Gillooly, J. F., Brown, J. H., West, G. B. and Savage, V. M. (2001). Effects of size and temperature on metabolic rate. Science 293, 22482251.
Grenfell, B. T. and Dobson, A. P. (1995). Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge.
Harvey, P. H. and Keymer, A. E. (1991). Comparing life histories using phylogenies. Philosophical Transactions of the Royal Society B. 332, 3139.
Hechinger, R. F. (2013). A metabolic and body-size scaling framework for parasite within-host abundance, biomass, and energy flux. The American Naturalist 182, 234248.
Hechinger, R. F. (2015). Parasites help find universal ecological rules. Proceedings of the National Academy of Sciences 112, 16561657.
Hechinger, R. F., Lafferty, K. D., Dobson, A. P., Brown, J. H. and Kuris, A. M. (2011). A common scaling rule for abundance, energetics, and production of parasitic and free-living species. Science 333, 445448.
Hechinger, R. F., Lafferty, K. D. and Kuris, A. M. (2012). Parasites. In Metabolic Ecology: a Scaling Approach (ed. Sibly, R. M., Brown, J. H. Kodric-Brown, A.), pp. 234247, 392 p. Wiley-Blackwell, Oxford.
Hudson, P. J. and Dobson, A. P. (1994). Microparasites, observed patterns. In Infectious Diseases in Natural Populations (ed. Grenfell, B. T. and Dobson, A. P.), pp. 144–76. Cambridge University Press, Cambridge.
Janovy, J. Jr., Ferdig, M. T. and McDowell, M. A. (1990). A model of dynamic behavior of a parasite species assemblage. Journal of Theoretical Biology 142, 517529.
Jetz, W., Carbone, C., Fulford, J. and Brown, J. H. (2005). The scaling of animal space use. Science 306, 266268.
Kozlowksi, J. and Konarzewski, M. (2004). Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Functional Ecology 18, 283289.
Lafferty, K. D., DeLeo, G., Briggs, C. J., Dobson, A. P., Gross, T. and Kuris, A. M. (2015). A general consumer-resource population model. Science 349, 854857.
Loeuille, N. and Loreau, M. (2005). Evolutionary emergence of size-structured food webs. Proceedings of the National Academy of Sciences of the United States of America 102, 57615766.
MacArthur, R. H. (1970). Species packing and competitive equilibrium for many species. Theoretical Population Biology 1, 111.
MacArthur, R. H. and Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. American Naturalist 101, 377385.
Marquet, P. A., Labra, F. A. and Maurer, B. A. (2004). Metabolic ecology: linking individuals to ecosystems. Ecology 85, 17941796.
May, R. M. and Anderson, R. M. (1978). Regulation and stability of host-parasite population interaction. II. Destabilizing processes. Journal of Animal Ecology 47, 249267.
May, R. M. and Anderson, R. M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proceedings of the Royal Society of London, Series B 219, 281313.
Molnar, P. K., Dobson, A. P. and Kutz, S. J. (2013 a). Gimme shelter – the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change. Global Change Biology 19, 32913305.
Molnar, P. K., Kutz, S. J., Hoar, B. M. and Dobson, A. P. (2013 b). Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecology Letters 16, 921.
Morand, S. (1996). Life-history traits in parasitic nematodes: a comparative approach for the search of invariants. Functional Ecology 10, 210218.
Morand, S. and Poulin, R. (1998). Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology 12, 717727.
Morand, S. and Poulin, R. (2002). Body size–density relationships and species diversity in parasitic nematodes: patterns and likely processes. Evolutionary Ecology Research 4, 951961.
Morand, S., Legendre, P., Gardner, S. L. and Hugot, J. P. (1996). Body size evolution of oxyurid (Nematoda) parasites: the role of hosts. Oecologia 107, 274282.
Osnas, E. E. and Dobson, A. P. (2010). Evolution of virulence when transmission occurs before disease. Biology Letters 6, 505508.
Osnas, E. E. and Dobson, A. P. (2012). Evolution of virulence in heterogeneous host communities under multiple trade-offs. Evolution 66, 391401.
Otto, S. B., Rall, B. C. and Brose, U. (2007). Allometric degree distributions facilitate food-web stability. Nature 450, 12261229.
Owen-Smith, R. N. (1988). Megaherbivores. The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge.
Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge University Press, Cambridge.
Poulin, R. (1995 a). Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.
Poulin, R. and Morand, S. (2000). Parasite body size and interspecific variation in levels of aggregation among nematodes. Journal of Parasitology 86, 642647.
Poulin, R. W. (1995 b). Evolution of parasite life history traits: myths and reality. Parasitology Today 11, 342345.
Price, C. A., Weitz, J. S., Savage, V. M., Stegen, J., Clarke, A., Coomes, D. A., Dodds, P. S., Etienne, R. S., Kerkhoff, A. J., McCulloh, K., Niklas, K. J., Olff, H. and Swenson, N. G. (2012). Testing the metabolic theory of ecology. Ecology Letters 15, 14651474.
Roberts, M. G. and Dobson, A. P. (1995). The population-dynamics of communities of parasitic helminths. Mathematical Biosciences 126, 191215.
Roberts, M. G., Smith, G. and Grenfell, B. T. (1993). Mathematical models for macroparasites of wildlife. In Ecology of Infectious Diseases in Natural Populations. Newton Workshop (ed. Dobson, A. P. and Grenfell, B. T.), pp. 177208. Cambridge University Press, Cambridge.
Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology: an Introduction. Macmillan Publishing Company Co., Inc., New York.
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004 a). Effects of body size and temperature on population growth. The American Naturalist 163, E429E441.
Savage, V. M., Gillooly, J. F., WoodruÆ, W. H., West, G. B., Allen, A. P., Enquist, B. J. and Brown, J. H. (2004 b). The predominance of quarterpower scaling in biology. Functional Ecology 18, 257282.
Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Body Size so Important? Cambridge University Press, Cambridge.
Shaw, D. J., Grenfell, B. T. and Dobson, A. P. (1998). Patterns of parasite aggregation and the negative binomial distribution. Parasitology 117, 597610.
Silva, M. and Downing, J. A. (1995). The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. The American Naturalist 145, 704727.
Skorping, A., Read, A. F. and Keymer, A. E. (1991). Life history covariation in intestinal nematodes of mammals. Oikos 60, 365372.
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford University Press, London.
Tilman, D., Lehman, C., HilleRisLambers, J., Harpole, W. S., Dybzinski, R., Fargione, J., Clark, C. and Lehman, C. (2004). Does metabolic theory apply to community ecology? It's a matter of scale. Ecology 85, 17971799.
Vance, R. R. (1985). The stable coexistence of two competitors for one resource. The American Naturalist 126, 7286.
Wakelin, D. (1984). Evasion of the immune response: survival within low responder individuals of the host population. Parasitology 88, 639657.
Weibel, E. R., Bacigalupe, L. D., Schmitt, B. and Hoppeler, H. (2004). Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respiratory Physiology & Neurobiology. 140, 115132.
Weitz, J. S. and Levin, S. A. (2006). Size and scaling in predator-prey dynamics. Ecology Letters 9, 548557.
West, G. B. and Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology 208, 15751592.
West, G. B., Brown, J. H. and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science 276, 122126.
West, G. B., Brown, J. H. and Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometry scaling of organisms. Science 284, 16771679.
White, C. R. and Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional to body mass 2/3. Proceedings of the National Academy of Sciences of the United States of America 100, 40464049.
Yodzis, P. and Innes, S. (1992). Body size and consumer-resource dynamics. The American Naturalist 139, 11511175.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed