Skip to main content
    • Aa
    • Aa

Central carbon metabolism of Leishmania parasites


Leishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets. In this review we summarize recent advances in our understanding of Leishmania central carbon metabolism, focusing on pathways of carbon utilization that are required for growth and pathogenesis in the mammalian host. While Leishmania central carbon metabolism shares many features in common with other pathogenic trypanosomatids, significant differences are also apparent. Leishmania parasites are also unusual in constitutively expressing most core metabolic pathways throughout their life cycle, a feature that may allow these parasites to exploit a range of different carbon sources (primarily sugars and amino acids) rapidly in both the insect vector and vertebrate host. Indeed, recent gene deletion studies suggest that mammal-infective stages are dependent on multiple carbon sources in vivo. The application of metabolomic approaches, outlined here, are likely to be important in defining aspects of central carbon metabolism that are essential at different stages of mammalian host infection.

Corresponding author
*Corresponding author: Malcolm McConville. Tel: 61-3-8344 2342. Email:
Hide All
Akerman M., Shaked-Mishan P., Mazareb S., Volpin H. and Zilberstein D. (2004). Novel motifs in amino acid permease genes from Leishmania. Biochemical and Biophysics Research Communications 325, 353366.
Besteiro S., Williams R. A., Coombs G. H. and Mottram J. C. (2007). Protein turnover and differentiation in Leishmania. International Journal for Parasitology 37, 10631075.
Bringaud F., Riviere L. and Coustou V. (2006). Energy metabolism of trypanosomatids: adaptation to available carbon sources. Molecular and Biochemical Parasitology 149, 19.
Bryson K., Besteiro S., McGachy H. A., Coombs G. H., Mottram J. C. and Alexander J. (2009). Overexpression of the natural inhibitor of cysteine peptidases in Leishmania mexicana leads to reduced virulence and a Th1 response. Infection and Immunity 77, 29712978.
Burchmore R. J., Rodriguez-Contreras D., McBride K., Merkel P., Barrett M. P., Modi G., Sacks D. and Landfear S. M. (2003). Genetic characterization of glucose transporter function in Leishmania mexicana. Proceedings of the National Academy of Sciences, USA 100, 39013906.
Chavali A. K., Whittemore J. D., Eddy J. A., Williams K. T. and Papin J. A. (2008). Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Molecular Systems Biology 4, 177.
Cohen-Freue G., Holzer T. R., Forney J. D. and McMaster W. R. (2007). Global gene expression in Leishmania. International Journal for Parasitology 37, 10771086.
Coustou V., Besteiro S., Riviere L., Biran M., Biteau N., Franconi J. M., Boshart M., Baltz T. and Bringaud F. (2005). A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. Journal of Biological Chemistry 280, 1655916570.
Coustou V., Biran M., Breton M., Guegan F., Riviere L., Plazolles N., Nolan D., Barrett M. P., Franconi J. M. and Bringaud F. (2008). Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. Journal of Biological Chemistry 283, 1634216354.
Croft S. L. and Coombs G. H. (2003). Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology 19, 502508.
De Souza D. P., Saunders E. C., McConville M. J. and Likic V. A. (2006). Progressive peak clustering in GC-MS metabolomic experiments applied to Leishmania parasites. Bioinformatics 22, 13911396.
Doyle M. A., MacRae J. I., De Souza D. P., Saunders E. C., McConville M. J. and Likic V. A. (2009). LeishCyc: a biochemical pathways database for Leishmania major. BMC Systems Biology 3, 57.
Fan W., Kraus P. R., Boily M. J. and Heitman J. (2005). Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryotic Cell 4, 14201433.
Feng X., Rodriguez-Contreras D., Buffalo C., Bouwer H. G., Kruvand E., Beverley S. M. and Landfear S. M. (2009). Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana. Molecular Microbiology 71, 369381.
Garami A. and Ilg T. (2001 a). Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO Journal 20, 36573666.
Garami A. and Ilg T. (2001 b). The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. Journal of Biological Chemistry 276, 65666575.
Gaur U., Roberts S. C., Dalvi R. P., Corraliza I., Ullman B. and Wilson M. E. (2007). An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. Journal of Immunology 179, 84468453.
Gorin P. A., Previato J. O., Mendonca-Previato L. and Travassos L. R. (1979). Structure of the D-mannan and D-arabino-D-galactan in Crithidia fasciculata: changes in proportion with age of culture. Journal of Protozoology 26, 473478.
Guerra D. G., Decottignies A., Bakker B. M. and Michels P. A. (2006). The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. Molecular and Biochemical Parasitology 149, 155169.
Gupta N., Goyal N., Singha U. K., Bhakuni V., Roy R. and Rastogi A. K. (1999). Characterization of intracellular metabolites of axenic amastigotes of Leishmania donovani by 1H NMR spectroscopy. Acta Tropica 73, 121133.
Hart D. T. and Coombs G. H. (1982). Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Experimental Parasitology 54, 397409.
Hellemond J. J., Bakker B. M. and Tielens A. G. (2005). Energy metabolism and its compartmentation in Trypanosoma brucei. Advances in Microbial Physiology 50, 199226.
Holzer T. R., McMaster W. R. and Forney J. D. (2006). Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Molecular and Biochemical Parasitology 146, 198218.
Kropf P., Fuentes J. M., Fahnrich E., Arpa L., Herath S., Weber V., Soler G., Celada A., Modolell M. and Muller I. (2005). Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB Journal 19, 10001002.
Kuhn D. and Wiese M. (2005). LmxPK4, a mitogen-activated protein kinase kinase homologue of Leishmania mexicana with a potential role in parasite differentiation. Molecular Microbiology 56, 11691182.
Lamour N., Riviere L., Coustou V., Coombs G. H., Barrett M. P. and Bringaud F. (2005). Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. Journal of Biological Chemistry 280, 1190211910.
Landfear S. M. (2008). Drugs and transporters in kinetoplastid protozoa. Advances in Experimental Medical Biology 625, 2232.
Maugeri D. A., Cazzulo J. J., Burchmore R. J., Barrett M. P. and Ogbunude P. O. (2003). Pentose phosphate metabolism in Leishmania mexicana. Molecular and Biochemical Parasitology 130, 117125.
McConville M. J. and Blackwell J. M. (1991). Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. Journal of Biological Chemistry 266, 1517015179.
Mendonca-Previato L., Gorin P. A. and Previato J. O. (1979). Investigations on polysaccharide components of cells of Herpetomonas samuelpessoai grown on various media. Biochemistry 18, 149154.
Morales M. A., Renaud O., Faigle W., Shorte S. L. and Spath G. F. (2007). Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity. International Journal for Parasitology 37, 11871199.
Morales M. A., Watanabe R., Laurent C., Lenormand P., Rousselle J. C., Namane A. and Spath G. F. (2008). Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8, 350363.
Naderer T., Ellis M. A., Sernee M. F., De Souza D. P., Curtis J., Handman E. and McConville M. J. (2006). Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proceedings of the National Academy of Sciences, USA 103, 55025507.
Naderer T. and McConville M. J. (2008). The Leishmania-macrophage interaction: a metabolic perspective. Cellular Microbiology 10, 301308.
Oberhardt M. A., Chavali A. K. and Papin J. A. (2009). Flux balance analysis: interrogating genome-scale metabolic networks. Methods in Molecular Biology 500, 6180.
Opperdoes F. and Coombs G. H. (2007). Metabolism of Leishmania; proven and predicted. Trends in Parasitology 23, 149158.
Paape D., Lippuner C., Schmid M., Ackermann R., Barrios-Llerena M. E., Zimny-Arndt U., Brinkmann V., Arndt B., Pleissner K. P., Jungblut P. R. et al. (2008). Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Molecular and Cellular Proteomics 7, 16881701.
Peacock C. S., Seeger K., Harris D., Murphy L., Ruiz J. C., Quail M. A., Peters N., Adlem E., Tivey A., Aslett M. et al. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847.
Peters N. C., Egen J. G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., Lawyer P., Fay M. P., Germain R. N. and Sacks D. (2008). In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321, 970974.
Rainey P. M. and MacKenzie N. E. (1991). A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Molecular and Biochemical Parasitology 45, 307315.
Ralton J. E., Naderer T., Piraino H. L., Bashtannyk T. A., Callaghan J. M. and McConville M. J. (2003). Evidence that intracellular beta1-2 mannan is a virulence factor in Leishmania parasites. Journal of Biological Chemistry 278, 4075740763.
Reguera R. M., Balana-Fouce R., Showalter M., Hickerson S. and Beverley S. M. (2009). Leishmania major lacking arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Molecular and Biochemical Parasitology 165, 4856.
Riviere L., Moreau P., Allmann S., Hahn M., Biran M., Plazolles N., Franconi J. M., Boshart M. and Bringaud F. (2009). Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proceedings of the National Academy of Sciences, USA 106, 1269412699.
Riviere L., van Weelden S. W., Glass P., Vegh P., Coustou V., Biran M., van Hellemond J. J., Bringaud F., Tielens A. G. and Boshart M. (2004). Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. Journal of Biological Chemistry 279, 4533745346.
Robinson M. D., De Souza D. P., Keen W. W., Saunders E. C., McConville M. J., Speed T. P. and Likic V. A. (2007). A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinformatics 8, 419.
Rodriguez-Contreras D., Feng X., Keeney K. M., Bouwer H. G. and Landfear S. M. (2007). Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. Molecular and Biochemical Parasitology 153, 9–18.
Rogers S., Scheltema R. A., Girolami M. and Breitling R. (2009). Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics 25, 512518.
Rosenzweig D., Smith D., Myler P. J., Olafson R. W. and Zilberstein D. (2008). Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8, 18431850.
Rosenzweig D., Smith D., Opperdoes F., Stern S., Olafson R. W. and Zilberstein D. (2007). Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB Journal 22, 590602.
Rubin-Bejerano I., Fraser I., Grisafi P. and Fink G. R. (2003). Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proceedings of the National Acadedmy of Sciences, USA 100, 1100711012.
Scott D. A., Hickerson S. M., Vickers T. J. and Beverley S. M. (2008). The role of the mitochondrial glycine cleavage complex in the metabolism and virulence of the protozoan parasite Leishmania major. Journal of Biological Chemistry 283, 155165.
Sernee M. F., Ralton J. E., Dinev Z., Khairallah G. N., O'Hair R. A., Williams S. J. and McConville M. J. (2006). Leishmania beta-1,2-mannan is assembled on a mannose-cyclic phosphate primer. Proceedings of the National Academy of Sciences, USA 103, 94589463.
Shaked-Mishan P., Suter-Grotemeyer M., Yoel-Almagor T., Holland N., Zilberstein D. and Rentsch D. (2006). A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Molecular Microbiology 60, 3038.
Smith D. F., Peacock C. and Cruz A. K. (2007). Comparative genomics; from geneotype to disease phenotype in the leishmaniases. International Journal for Parasitology 37, 11731186.
Stuart K., Brun R., Croft S., Fairlamb A., Gurtler R. E., McKerrow J., Reed S. and Tarleton R. (2008). Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation 118, 13011310.
Tasker M., Timms M., Hendriks E. and Matthews K. (2001). Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels. Molecular Microbiology 39, 272285.
Tielens A. G. and van Hellemond J. J. (2009). Surprising variety in energy metabolism within Trypanosomatidae. Trends in Parasitology 25, 482490.
Van Hellemond J. J. and Tielens A. G. (1997 a). Inhibition of the respiratory chain results in a reversible metabolic arrest in Leishmania promastigotes. Molecular and Biochemical Parasitology 85, 135138.
Van Hellemond J. J. and Tielens A. G. (1997 b). Inhibition of the respiratory chain results in a reversible metabolic arrest in Leishmania promastigotes. Molecular and Biochemical Parasitology 85, 135138.
van Weelden S. W., van Hellemond J. J., Opperdoes F. R. and Tielens A. G. (2005). New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. Journal of Biological Chemistry 280, 1245112460.
Wiese M. (1998). A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO Journal 17, 26192628.
Wiese M. (2007). Leishmania MAP kinases – familiar proteins in an unusual context. International Journal for Parasitology 37, 10531062.
Winter G., Fuchs M., McConville M. J., Stierhof Y. D. and Overath P. (1994). Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. Journal of Cell Science 107, 24712482.
Zamboni N., Fendt S. M., Ruhl M. and Sauer U. (2009). (13)C-based metabolic flux analysis. Nature Protocols 4, 878892.
Zamboni N. and Sauer U. (2009). Novel biological insights through metabolomics and 13C-flux analysis. Current Opinion in Microbiology 12, 553558.
Zhang K., Hsu F. F., Scott D. A., Docampo R., Turk J. and Beverley S. M. (2005). Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Molecular Microbiology 55, 15661578.
Zikova A., Schnaufer A., Dalley R. A., Panigrahi A. K. and Stuart K. D. (2009). The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathogens 5, e1000436.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 13
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 233 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.