Skip to main content
    • Aa
    • Aa

Central carbon metabolism of Leishmania parasites


Leishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets. In this review we summarize recent advances in our understanding of Leishmania central carbon metabolism, focusing on pathways of carbon utilization that are required for growth and pathogenesis in the mammalian host. While Leishmania central carbon metabolism shares many features in common with other pathogenic trypanosomatids, significant differences are also apparent. Leishmania parasites are also unusual in constitutively expressing most core metabolic pathways throughout their life cycle, a feature that may allow these parasites to exploit a range of different carbon sources (primarily sugars and amino acids) rapidly in both the insect vector and vertebrate host. Indeed, recent gene deletion studies suggest that mammal-infective stages are dependent on multiple carbon sources in vivo. The application of metabolomic approaches, outlined here, are likely to be important in defining aspects of central carbon metabolism that are essential at different stages of mammalian host infection.

Corresponding author
*Corresponding author: Malcolm McConville. Tel: 61-3-8344 2342. Email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

F. Bringaud , L. Riviere and V. Coustou (2006). Energy metabolism of trypanosomatids: adaptation to available carbon sources. Molecular and Biochemical Parasitology 149, 19.

R. J. Burchmore , D. Rodriguez-Contreras , K. McBride , P. Merkel , M. P. Barrett , G. Modi , D. Sacks and S. M. Landfear (2003). Genetic characterization of glucose transporter function in Leishmania mexicana. Proceedings of the National Academy of Sciences, USA 100, 39013906.

G. Cohen-Freue , T. R. Holzer , J. D. Forney and W. R. McMaster (2007). Global gene expression in Leishmania. International Journal for Parasitology 37, 10771086.

V. Coustou , S. Besteiro , L. Riviere , M. Biran , N. Biteau , J. M. Franconi , M. Boshart , T. Baltz and F. Bringaud (2005). A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. Journal of Biological Chemistry 280, 1655916570.

V. Coustou , M. Biran , M. Breton , F. Guegan , L. Riviere , N. Plazolles , D. Nolan , M. P. Barrett , J. M. Franconi and F. Bringaud (2008). Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. Journal of Biological Chemistry 283, 1634216354.

X. Feng , D. Rodriguez-Contreras , C. Buffalo , H. G. Bouwer , E. Kruvand , S. M. Beverley and S. M. Landfear (2009). Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana. Molecular Microbiology 71, 369381.

P. A. Gorin , J. O. Previato , L. Mendonca-Previato and L. R. Travassos (1979). Structure of the D-mannan and D-arabino-D-galactan in Crithidia fasciculata: changes in proportion with age of culture. Journal of Protozoology 26, 473478.

N. Lamour , L. Riviere , V. Coustou , G. H. Coombs , M. P. Barrett and F. Bringaud (2005). Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. Journal of Biological Chemistry 280, 1190211910.

M. A. Morales , O. Renaud , W. Faigle , S. L. Shorte and G. F. Spath (2007). Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity. International Journal for Parasitology 37, 11871199.

T. Naderer , M. A. Ellis , M. F. Sernee , D. P. De Souza , J. Curtis , E. Handman and M. J. McConville (2006). Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proceedings of the National Academy of Sciences, USA 103, 55025507.

D. Paape , C. Lippuner , M. Schmid , R. Ackermann , M. E. Barrios-Llerena , U. Zimny-Arndt , V. Brinkmann , B. Arndt , K. P. Pleissner , P. R. Jungblut (2008). Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Molecular and Cellular Proteomics 7, 16881701.

P. M. Rainey and N. E. MacKenzie (1991). A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Molecular and Biochemical Parasitology 45, 307315.

J. E. Ralton , T. Naderer , H. L. Piraino , T. A. Bashtannyk , J. M. Callaghan and M. J. McConville (2003). Evidence that intracellular beta1-2 mannan is a virulence factor in Leishmania parasites. Journal of Biological Chemistry 278, 4075740763.

L. Riviere , P. Moreau , S. Allmann , M. Hahn , M. Biran , N. Plazolles , J. M. Franconi , M. Boshart and F. Bringaud (2009). Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proceedings of the National Academy of Sciences, USA 106, 1269412699.

M. D. Robinson , D. P. De Souza , W. W. Keen , E. C. Saunders , M. J. McConville , T. P. Speed and V. A. Likic (2007). A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinformatics 8, 419.

D. Rosenzweig , D. Smith , P. J. Myler , R. W. Olafson and D. Zilberstein (2008). Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8, 18431850.

D. Rosenzweig , D. Smith , F. Opperdoes , S. Stern , R. W. Olafson and D. Zilberstein (2007). Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB Journal 22, 590602.

D. F. Smith , C. Peacock and A. K. Cruz (2007). Comparative genomics; from geneotype to disease phenotype in the leishmaniases. International Journal for Parasitology 37, 11731186.

J. J. Van Hellemond and A. G. Tielens (1997 b). Inhibition of the respiratory chain results in a reversible metabolic arrest in Leishmania promastigotes. Molecular and Biochemical Parasitology 85, 135138.

N. Zamboni and U. Sauer (2009). Novel biological insights through metabolomics and 13C-flux analysis. Current Opinion in Microbiology 12, 553558.

A. Zikova , A. Schnaufer , R. A. Dalley , A. K. Panigrahi and K. D. Stuart (2009). The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathogens 5, e1000436.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 10
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 154 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th May 2017. This data will be updated every 24 hours.