Skip to main content
×
Home
    • Aa
    • Aa

Chaperoning parasitism: the importance of molecular chaperones in pathogen virulence

  • UTPAL TATU (a1) and LEN NECKERS (a2)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Chaperoning parasitism: the importance of molecular chaperones in pathogen virulence
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Chaperoning parasitism: the importance of molecular chaperones in pathogen virulence
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Chaperoning parasitism: the importance of molecular chaperones in pathogen virulence
      Available formats
      ×
Abstract
Copyright
Corresponding author
* Corresponding author: Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India. E-mail: tatu@biochem.iisc.ernet.in
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. V. Alarcon , M. Mollapour , M. J. Lee , S. Tsutsumi , S. Lee , Y. S. Kim , T. Prince , A. B. Apolo , G. Giaccone , W. Xu , L. M. Neckers and J. B. Trepel (2012). Tumor-intrinsic and tumor-extrinsic factors impacting hsp90-targeted therapy. Current Molecular Medicine 12, 11251141.

G. Banumathy , V. Singh , S. R. Pavithra and U. Tatu (2003). Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. Journal of Biological Chemistry 278, 1833618345.

L. Cowen (2013). The fungal Achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Current Opinion in Microbiology 16, 377384.

D. E. Dollins , J. J. Warren , R. M. Immormino and D. T. Gewirth (2007). Structures of GRP94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Molecular Cell 28, 4156. doi: 10.1016/j.molcel.2007.08.024.

S. J. Felts , B. A. Owen , P. Nguyen , J. Trepel , D. B. Donner and D. O. Toft (2000). The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. Journal of Biological Chemistry 275, 33053312.

S. Frey , A. Leskovar , J. Reinstein and J. Buchner (2007). The ATPase cycle of the endoplasmic chaperone Grp94. Journal of Biological Chemistry 282, 3561235620. doi: 10.1074/jbc.M704647200.

R. Geller , M. Vignuzzi , R. Andino and J. Frydman (2007). Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes and Development 21, 195205.

I. Grad , C. R. Cederroth , J. Walicki , C. Grey , S. Barluenga , N. Winssinger , B. De Massy , S. Nef and D. Picard (2010). The molecular chaperone Hsp90 alpha is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 5, e15770. doi: 10.1371/journal.pone.0015770.

O. Hainzl , M. C. Lapina , J. Buchner and K. Richter (2009). The charged linker region is an important regulator of Hsp90 function. Journal of Biological Chemistry 284, 2255922567. doi: 10.1074/jbc.M109.031658.

A. T. Large , M. D. Goldberg and P. A. Lund (2009). Chaperones and protein folding in the Archaea . Biochemical Society Transactions 37, 4651. doi: 10.1042/BST0370046.

A. Leskovar , H. Wegele , N. D. Werbeck , J. Buchner and J. Reinstein (2008). The ATPase cycle of the mitochondrial Hsp90 analog Trap1. Journal of Biological Chemistry 283, 1167711688. doi: 10.1074/jbc.M709516200.

S. H. McLaughlin , L. A. Ventouras , B. Lobbezoo and S. E. Jackson (2004). Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. Journal of Molecular Biology 344, 813826. doi: 10.1016/j.jmb.2004.09.055.

M. Mickler , M. Hessling , C. Ratzke , J. Buchner and T. Hugel (2009). The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nature Structural & Molecular Biology 16, 281286. doi: 10.1038/nsmb.1557.

N. Miyajima , S. Tsutsumi , C. Sourbier , K. Beebe , M. Mollapour , C. Rivas , S. Yoshida , J. Trepel , Y. Huang , M. Tatokoro , N. Shinohara , K. Nonomura and L. Neckers (2013). The HSP90 inhibitor ganetespib synergizes with the MET kinase inhibitor crizotinib in both crizotinib-sensitive and -resistant MET-driven tumor models. Cancer Research 73, 70227033.

M. Mollapour and L. Neckers (2011). Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochimica et Biophysica Acta 1823, 648655. doi: S0167-4889(11)00217-5; [pii]: 10.1016/j.bbamcr.2011.07.018.

L. Neckers (2006). Using natural product inhibitors to validate Hsp90 as a molecular target in cancer. Current Topics in Medicinal Chemistry 6, 11631171.

L. Neckers and U. Tatu (2008). Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host and Microbe 4, 519527.

L. Neckers and P. Workman (2012). Hsp90 molecular chaperone inhibitors: are we there yet? Clinical Cancer Research 18, 6476.

R. Pallavi , N. Roy , R. K. Nageshan , P. Talukdar , S. R. Pavithra , R. Reddy , S. Venketesh , R. Kumar , A. K. Gupta , R. K. Singh , S. C. Yadav and U. Tatu (2010). Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. Journal of Biological Chemistry 285, 3796437975.

L. H. Pearl and C. Prodromou (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry 75, 271294. doi: 10.1146/annurev.biochem.75.103004.142738.

D. Picard (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences 59, 16401648.

M. Sciacovelli , G. Guzzo , V. Morello , C. Frezza , L. Zheng , N. Nannini , F. Calabrese , G. Laudiero , F. Esposito , M. Landriscina , P. Defilippi , P. Bernardi and A. Rasola (2013). The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metabolism 17, 988999.

A. K. Shiau , S. F. Harris , D. R. Southworth and D. A. Agard (2006). Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329340. doi: 10.1016/j.cell.2006.09.027.

M. Taipale , D. F. Jarosz and S. Lindquist (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews. Molecular Cell Biology 11, 515528. doi: 10.1038/nrm2918.

J. Trepel , M. Mollapour , G. Giaccone and L. Neckers (2010). Targeting the dynamic HSP90 complex in cancer. Nature Reviews. Cancer 10, 537549. doi: 10.1038/nrc2887.

S. Tsutsumi , M. Mollapour , C. Graf , C. T. Lee , B. T. Scroggins , W. Xu , L. Haslerova , M. Hessling , A. A. Konstantinova , J. B. Trepel , B. Panaretou , J. Buchner , M. P. Mayer , C. Prodromou and L. Neckers (2009). Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nature Structural & Molecular Biology 16, 11411147. doi: 10.1038/nsmb.1682.

S. Tsutsumi , M. Mollapour , C. Prodromou , C. T. Lee , B. Panaretou , S. Yoshida , M. P. Mayer and L. M. Neckers (2012). Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proceedings of the National Academy of Sciences USA 109, 29372942. doi: 10.1073/pnas.1114414109.

C. K. Vaughan , U. Gohlke , F. Sobott , V. M. Good , M. M. Ali , C. Prodromou , C. V. Robinson , H. R. Saibil and L. H. Pearl (2006). Structure of an Hsp90-Cdc37-Cdk4 complex. Molecular Cell 23, 697707. doi: 10.1016/j.molcel.2006.07.016.

S. K. Wandinger , K. Richter and J. Buchner (2008). The Hsp90 chaperone machinery. Journal of Biological Chemistry 283, 1847318477. doi: 10.1074/jbc.R800007200.

S. Yoshida , S. Tsutsumi , G. Muhlebach , C. Sourbier , M. Lee , S. Lee , E. Vartholomaiou , M. Tatokoro , K. Beebe , N. Miyajima , R. Mohney , Y. Chen , H. Hasumi , W. Xu , H. Fukushima , K. Nakamura , F. Koga , K. Kihara , J. Trepel , D. Picard and L. Neckers (2013). Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proceedings of the National Academy of Sciences USA 110, E1604E1612.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 12
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 93 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.