Skip to main content Accessibility help
×
Home

Defining the concept of ‘tick repellency’ in veterinary medicine

  • L. HALOS (a1), G. BANETH (a2), F. BEUGNET (a1), A. S. BOWMAN (a3), B. CHOMEL (a4), R. FARKAS (a5), M. FRANC (a6), J. GUILLOT (a7), H. INOKUMA (a8), R. KAUFMAN (a9), F. JONGEJAN (a10), A. JOACHIM (a11), D. OTRANTO (a12), K. PFISTER (a13), M. POLLMEIER (a1), A. SAINZ (a14) and R. WALL (a15)...

Summary

Although widely used, the term repellency needs to be employed with care when applied to ticks and other periodic or permanent ectoparasites. Repellency has classically been used to describe the effects of a substance that causes a flying arthropod to make oriented movements away from its source. However, for crawling arthropods such as ticks, the term commonly subsumes a range of effects that include arthropod irritation and consequent avoiding or leaving the host, failing to attach, to bite, or to feed. The objective of the present article is to highlight the need for clarity, to propose consensus descriptions and methods for the evaluation of various effects on ticks caused by chemical substances.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Defining the concept of ‘tick repellency’ in veterinary medicine
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Defining the concept of ‘tick repellency’ in veterinary medicine
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Defining the concept of ‘tick repellency’ in veterinary medicine
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: Merial, 29 Av. Tony Garnier 69007 Lyon, France. Tel: +33 (0) 4 72 72 34 42. E-mail: lenaig.halos@merial.com

References

Hide All
Bissinger, B. W. and Roe, R. M. (2010). Tick repellents: past, present, and future. Pesticide Biochemistry and Physiology 96, 6379.
Brown, M. and Hebert, A. A. (1997). Insect repellents: an overview. Journal of the American Academy of Dermatology 36, 243249.
Dethier, V. G., Browne, L. B. and Smith, C. N. (1960). The designation of chemicals in terms of the responses they elicit from insects. Journal of Economic Entomology 53, 134136.
Dryden, M. W., Payne, P. A., Smith, V. and Hostetler, J. (2006 a). Efficacy of imidacloprid (8·8% w/w) plus permethrin (44% w/w) spot-on topical solution against Amblyomma americanum infesting dogs using a natural tick exposure model. Veterinary Therapeutics 7, 99106.
Dryden, M. W., Payne, P. A., Smith, V. and Hostetler, J. (2006 b). Evaluation of an imidacloprid (8·8%w/w)-permethrin (44·0% w/w) topical spot-on and a fipronil (9·8% w/w)-(S)-methoprene (8·8% w/w) topical spot-on to repel, prevent attachment, and kill adult Rhipicephalus sanguineus and Dermacentor variabilis ticks on dogs. Veterinary Therapeutics 7, 187198.
Endris, R. G., Cooke, D., Amodie, D., Sweeney, D. L. and Katz, T. L. (2002). Repellency and efficacy of 65% permethrin and selamectin spot-on formulations against Ixodes ricinus ticks on dogs. Veterinary Therapeutics 3, 6471.
Endris, R. G., Matthewson, M. D., Cooke, M. D. and Amodie, D. (2000). Repellency and efficacy of 65% permethrin and 9·7% fipronil against Ixodes ricinus. Veterinary Therapeutics 1, 159168.
European Medicine Agency (2007). Guidelines for the Testing and Evaluation of the Efficacy of Antiparasitic Substances for the Treatment and Prevention of Tick and Flea Infestation in Dogs and Cats. EMA Committee for Medicinal Products for Veterinary Use Guideline No. EMEA/CVMP/EWP/005/2000-Rev2-2007. European Medicine Agency, London, UK.
Folz, S. D., Ash, K. A., Conder, G. A. and Rector, D. L. (1986). Amitraz: a tick and flea repellent and tick detachment drug. Journal of Veterinary Pharmacology and Therapeutics 9, 150156.
Ian, R. H. and Bryan, H. P. (1981). Further studies on amitraz as a veterinary acaricide. Pesticide Science 12, 467474.
Marchiondo, A. A., Holdsworth, P. A., Green, P., Blagburn, B. L. and Jacobs, D. E. (2007). World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guidelines for evaluating the efficacy of parasiticides for the treatment, prevention and control of flea and tick infestation on dogs and cats. Veterinary Parasitology 145, 332344.
Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L. and Yeh, J. Z. (2010). Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pesticide Biochemistry and Physiology 97, 149152.
Otranto, D., Dantas-Torres, F. and Breitschwerdt, E. B. (2009). Managing canine vector-borne diseases of zoonotic concern: part one. Trends in Parasitology 25, 157163.
Otranto, D. and Wall, R. (2008). New strategies for the control of arthropod vectors of disease in dogs and cats. Medical and Veterinary Entomology 22, 291302.
Randolph, S. E. (2009). Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 136, 14031413.
Sonenshine, D. E., Lane, R. S. and Nicholson, W. L. (2002). Ticks (Ixodida). In Medical and Veterinary Entomology (eds. Mullen, G. and Durden, L.). pp. 517558. Academic Press, San Diego, CA, USA.
Wege, P. J., Bywater, A. F., Le Patourel, G. N. J. and Hoppé, M. (2002). Acquisition and transfer of a lambda-cyhalothrin microcapsule formulation by Blattella germanica. In Proceedings of the 4th Conference on Urban Pests, Charleston, Virginia, USA (eds. Jones, S. C., Zai, J. and Robinson, Wm.H.). pp. 135146.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed