Skip to main content
×
Home
    • Aa
    • Aa

Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis)

  • MIRANDA R. BERTRAM (a1), GABRIEL L. HAMER (a2), BARRY K. HARTUP (a3) (a4), KAREN F. SNOWDEN (a5), MATTHEW C. MEDEIROS (a2) and SARAH A. HAMER (a1)...
Abstract
SUMMARY

The population growth of endangered whooping cranes (Grus americana) is not consistent with species recovery goals, and the impact of parasite infection on whooping crane populations is largely unknown. Disease ecology and epidemiology research of endangered species is often hindered by limited ability to conduct invasive sampling on the target taxa. Accordingly, we hypothesized that sandhill cranes (Grus canadensis) would be a useful surrogate species to investigate the health impacts of Haemosporida infection in whooping cranes. Our goal was to compare the prevalence and diversity of Haemosporida infection between whooping cranes and sandhill cranes. We detected an overall infection prevalence of 83·6% (n = 61) in whooping cranes and 59·6% (n = 47) and 63·6 (n = 22) in two sympatric sandhill crane populations captured in Texas. Prevalence was significantly lower in allopatric sandhill cranes captured in New Mexico (12·1%, n = 33). Haemoproteus antigonis was the most abundant haemoparasite in cranes, present in 57·4% of whooping cranes and 39·2% of sandhill cranes; Plasmodium and Leucocytozoon were present at significantly lower levels. The high prevalence of Haemosporida in whooping cranes and sympatric sandhill cranes, with shared parasite lineages between the two species, supports sandhill cranes as a surrogate species for understanding health threats to endangered whooping cranes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis)
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis)
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis)
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author: Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, (979) 847-5693, USA. E-mail: shamer@cvm.tamu.edu
Footnotes
Hide All
† Current address: Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East West Road, Honolulu, HI 96822, USA.
Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Asghar , D. Hasselquist , B. Hansson , P. Zehtindjiev , H. Westerdahl and S. Bensch (2015). Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436438.

C. T. Atkinson and M. D. Samuel (2010). Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on ‘apapane Himatione sanguinea . Journal of Avian Biology 41, 357366.

G. F. Bennett and A. M. Fallis (1960). Blood parasites of birds in Algonquin Park, Canada, and a discussion of their transmission. Canadian Journal of Zoology 38, 261273.

G. F. Bennett , R. A. Khan and A. G. Campbell (1974). Leucocytozoon grusi sp. n. (Sporozoa: Leucocytozoidae) from a sandhill crane, Grus canadensis (L.). Journal of Parasitology 60, 359363.

M. R. Bertram , G. L. Hamer , K. Snowden , B. K. Hartup and S. A. Hamer (2015). Coccidian parasites and conservation implications for the endangered whooping crane (Grus americana). PLoS ONE 10, e0127679.

T. Caro , J. Eadie and A. Sih (2005). Use of substitute species in conservation biology. Conservation Biology 19, 18211826.

R. J. Dusek , M. G. Spalding , D. J. Forrester and E. C. Greiner (2004). Haemoproteus balearicae and other blood parasites of free-ranging Florida sandhill crane chicks. Journal of Wildlife Diseases 40, 682687.

V. A. Ellis , M. D. Collins , M. C. Medeiros , E. H. Sari , E. D. Coffey , R. C. Dickerson , C. Lugarini , J. A. Stratford , D. R. Henry , L. Merrill , A. E. Matthews , A. A. Hanson , J. R. Roberts , M. Joyce , M. R. Kunkel and R. E. Ricklefs (2015). Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites. Proceedings of the National Academy of Sciences of the United States of America 112, 1129411299.

A. Fecchio , M. R. Lima , M. Svensson-Coelho , M. A. Marini and R. E. Ricklefs (2013). Structure and organization of an avian haemosporidian assemblage in a Neotropical savanna in Brazil. Parasitology 140, 181192.

D. J. Forrester , A. O. Bush and L. E. Williams (1975). Parasites of Florida sandhill cranes (Grus canadensis pratensis). Journal of Parasitology 61, 547548.

D. J. Forrester , J. W. Carpenter and D. R. Blankinship (1978). Coccidia of whooping cranes. Journal of Wildlife Diseases 14, 2427.

L. Z. Garamszegi (2010). The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. Journal of Parasitology 96, 11971203.

K. C. Gil-Weir , W. E. Grant , R. D. Slack , H.-H. Wang and M. Fujiwara (2012). Demography and population trends of Whooping Cranes. Journal of Field Ornithology 83, 110.

A. G. Hill , L. Howe , B. D. Gartrell and M. R. Alley (2010). Prevalence of Leucocytozoon spp, in the endangered yellow-eyed penguin Megadyptes antipodes . Parasitology 137, 14771485.

G. L. Krapu , D. A. Brandt , K. L. Jones and D. H. Johnson (2011). Geographic distribution of the mid-continent population of sandhill cranes and related management applications. Wildlife Monographs 175, 138.

E. S. Martinsen , S. L. Perkins and J. J. Schall (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Molecular Phylogenetics and Evolution 47, 261273.

M. C. Medeiros , G. L. Hamer and R. E. Ricklefs (2013). Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proceedings of the Royal Society B: Biological Sciences 280, 20122947.

L. Mendes , T. Piersma , M. Lecoq , B. Spaans and R. E. Ricklefs (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396404.

D. D. Murphy , P. S. Weiland and K. W. Cummins (2011). A critical assessment of the use of surrogate species in conservation planning in the Sacreamento-San Joaquin Delta, California (USA). Conservation Biology 25, 873878.

D. C. Outlaw and R. E. Ricklefs (2010). Comparative gene evolution in haemosporidian (Apicomplexa) parasites of birds and mammals. Molecular Biology and Evolution 27, 537542.

S. L. Perkins and J. J. Schall (2002). A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. Journal of Parasitology 88, 972978.

M. J. Peterson , J. R. Purvis , J. R. Lichtenfels , T. M. Craig , N. O. J. Dronen and N. J. Silvy (1998). Serologic and parasitologic survey of the endangered Attwater's prairie chicken. Journal of Wildlife Diseases 34, 137144.

J. R. Purvis , M. J. Peterson , N. O. Dronen , J. R. Lichtenfels and N. J. Silvy (1998). Northern bobwhites as disease indicators for the endangered Attwater's prairie chicken. Journal of Wildlife Diseases 34, 348354.

R. E. Ricklefs , B. L. Swanson , S. M. Fallon , A. Martinez-Abrain , A. Scheuerlein , J. Gray and S. C. Latta (2005). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs 75, 543559.

R. N. Sehgal , A. C. Hull , N. L. Anderson , G. Valkiunas , M. J. Markovets , S. Kawamura and L. A. Tell (2006). Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. Journal of Parasitology 92, 375379.

E. Szollosi , O. Hellgren and D. Hasselquist (2008). A cautionary note on the use of nested PCR for parasite screening – an example from avian blood parasites. Journal of Parasitology 94, 562564.

K. Tamura , G. Stecher , D. Peterson , A. Filipski and S. Kumar (2013). MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 27252729.

G. Valkiunas , S. Bensch , T. A. Iezhova , A. Krizanauskiene , O. Hellgren and C. V. Bolshakov (2006). Nested cytochrome B polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. Journal of Parasitology 92, 418422.

G. Valkiunas , T. A. Lezhova , A. Krizanauskiene , V. Palinauskas , R. N. Sehgal and S. Bensch (2008). A comparative analysis of microscopy and PCR-based detection methods for blood parasites. Journal of Parasitology 94, 13951401.

R. E. Warner (1968). Role of introduced diseases in extinction of endemic Hawaiian avifauna. Condor 70, 101120.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 126 *
Loading metrics...

Abstract views

Total abstract views: 212 *
Loading metrics...

* Views captured on Cambridge Core between 12th December 2016 - 29th May 2017. This data will be updated every 24 hours.