Skip to main content
    • Aa
    • Aa

The use of DNA hybridization and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies

  • P. Paindavoine (a1), E. Pays (a1), M. Laurent (a1), Y. Geltmeyer (a1), D. Le Ray (a2), D. Mehlitz (a3) and M. Steinert (a1)...

The nuclear DNAs of 71 trypanosome stocks from different African countries, representative of the three Trypanosoma brucei subspecies, and one T. evansi stock, have been analysed by the combined use of restriction endonuclease digestion, gel electrophoresis and molecular hybridization with both trypanosome surface-antigen-specific and undefined genomic DNA probes. In contrast with T. brucei brucei and T. brucei rhodesiense stocks, all the T. b. gambiense stocks are characterized by a conserved, specific DNA band pattern, regardless of the probe. This allows T. b. gambiense to be non-ambiguously identified. On the contrary, T. b. brucei and T. b. rhodesiense, which could not be discriminated by the same criteria, both yield highly variable DNA band patterns. Our data confirm that domestic animals like pig, dog and sheep constitute a potential reservoir for T. b. gambiense. Using a numerical analysis of the DNA hybridization patterns we have measured the degree of similarity between the 72 trypanosome stocks. This investigation shows that all T. b. gambiense stocks are included in the same homogeneous population, while the stocks from the two other subspecies seem to be distributed in several heterogeneous groups, some of these showing correlation with the geographical origin of the trypanosomes. It is concluded that (i) T. b. gambiense stands out as a real subspecies that has undergone a distinct evolution relative to the ‘non-gambiense’ group, (ii) the alleged T. b. rhodesiense subspecies does not fit with any of the groups evidenced by our cladistic analysis and hence does not appear as a distinct subspecies and (iii) ‘non-gambiense’ trypanosomes are probably evolving much more rapidly than T. b. gambiense. Different aspects of trypanosome relationships and evolution are discussed.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W. D. Benton & R. W. Davis (1977). Screening gt recombinant clones by hybridization to single plaques in situ. Science 196, 180–2.

A. Bernards , P. A. M. Michels , C. R. Lincke & P. Borst (1983). Growth of chromosome ends in multiplying trypanosomes. Nature, London 303, 592–7.

P. Borst & G. A. M. Cross (1982). Molecular basis for trypanosome antigenic variation. Cell 29, 291303.

P. Borst , F. Fase-Fowler , A. C. C. Frasch , J. H. J. Hoeijmakers & P. J. Weijers (1980 a). Characterization of DNA from Trypanosoma brucei and related trypanosomes by restriction endonuclease digestion. Molecular and Biochemical Parasitology 1, 221–46.

P. Borst , F. Fase-Fowler , A. C. C. Frasch , J. H. J. Hoeijmakers & P. J. Weijers (1980 b). Variations in maxi-circle and mini-circle sequences in kinetoplast DNAs from different Trypanosoma brucei strains. Biochemica et Biophysica Acta 610, 197210.

P. Borst , F. Fase-Fowler , & W. C. Gibson (1981). Quantitation of genetic differences between Trypanosoma brucei gambiense, rhodesiense and brucei by restriction enzyme analysis of kinetoplast DNA. Molecular and Biochemical Parasitology 3, 117–31.

A. C. C. Frasch , P. Borst & J. Van den Burg (1982). Rapid evolution of genes coding for variant surface glycoproteins in trypanosomes. Gene 17, 197211.

W. C. Gibson , T. F. Marshall & D. G. Godfrey (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.

D. G. Godfrey & V. Kilgour (1976). Enzyme electrophoresis in characterizing the causative organism of Gambian trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 219–24.

F. Hawking (1976). The resistance to human plasma of Trypanosoma brucei, T. rhodesience and T. gambiense. II. Survey of strains from East Africa and Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 513–20.

M. Laurent , E. Pays , K. Delinte , E. Magnus , N. Van Meirvenne & M. Steinert (1984 a). Evolution of a surface antigen gene repertoire is linked to a non-duplicative gene activation. Nature, London 308, 370–3.

M. Laurent , E. Pays , E. Magnus , N. Van Meirvenne , G. Matthyssens , R. D. Williams & M. Steinert (1983). DNA rearrangements linked to expression of a predominant surface antigen gene of trypanosomes. Nature, London 302, 263–6.

M. Laurent , E. Pays , A. Van Der Werf , D. Aerts , E. Magnus , N. Van Meirvenne & M. Steinert (1984 b). Translocation alters the activation rate of a trypanosome surface antigen gene. Nucleic Acids Research 12, 8319–28.

E. Pays , P. Dekerck , S. Van Assel , A. B. Eldirdiri , D. Le Ray , N. Van Meirvenne & M. Steinert (1983 e). Comparative analysis of a Trypanosoma brucei gambiense antigen gene family and its potential use in epidemiology of sleeping sickness. Molecular and Biochemical Parasitology 7, 6374.

E. Pays , M. F. Delauw , S. Van Assel , M. Laurent , T. Vervoort , N. Van Meirvenne & M. Steinert (1983 c). Modification of a Trypanosoma b. brucei antigen gene repertoire by different DNA recombinational mechanisms. Cell 35, 721–31.

E. Pays , M. Delronche , M. Lheureux , T. Vervoort , J. Bloch , F. Gannon & M. Steinert (1980). Cloning and characterization of DNA sequences complementary to mRNAs coding for the synthesis of two surface antigens of Trypanosoma brucei. Nucleic Acids Research 8, 5965–81.

E. Pays , M. Laurent , K. Delinte , N. Van Meirvenne & M. Steinert (1983 d). Differential size variations between transcriptionally active and inactive telomeres of Trypanosoma brucei. Nucleic Acids Research 11, 8137–47.

E. Pays , M. Lheureux and M. Steinert (1982). Structure and expression of a Trypanosoma brucei gambiense variant-specific antigen gene. Nucleic Acids Research 10, 3149–63.

E. Pays , M. Lheureux , T. Vervoort & M. Steinert (1981). Conservation of a variant-specific surface antigen gene in different trypanosome species and subspecies. Molecular and Biochemical Parasitology 4, 349–57.

E. Pays , S. Van Assel , M. Laurent , M. Darville , T. Vervoort , N. Van Meirvenne & M. Steinert (1983 b). Gene conversion as a mechanism for antigenic variation in trypanosomes. Cell, 34, 371–81.

E. Pays , S. Van Assel , M. Laurent , B. Dero , F. Michiels , P. Kronenberger , G. Matthyssens , N. Van Meirvenne , D. Le Ray & M. Steinert (1983 a). At least two transposed sequences are associated in the expression site of a surface antigen gene in different trypanosome clones. Cell 34, 359–69.

P. W. J. Rigby , M. Dickmann , C. Rhodes & P. J. Berg (1977). Labelling DNA to high specific activity in vitro by nick-translation with polymerase I. Journal of Molecular Biology 113, 237–51.

C. M. Scott , J. L. Freizil , A. Tundic & D. G. Godfrey (1983). The sheep as a potential reservoir of human trypanosomiasis in the Republic of Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 397401.

E. M. Southern (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.

A. Tait (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 287, 536–8.

L. H. T. Van Der Ploeg , A. Y. C. Liu & P. Borst (1984). Structure of the growing telomeres of trypanosomes. Cell 36, 459–68.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score