Skip to main content Accessibility help
×
×
Home

Effects of salinity and temperature on in vitro cell cycle and proliferation of Perkinsus marinus from Brazil

  • FERNANDO RAMOS QUEIROGA (a1), LUIS FERNANDO MARQUES-SANTOS (a2), ISAC ALMEIDA DE MEDEIROS (a3) and PATRÍCIA MIRELLA DA SILVA (a1)

Summary

Field and in vitro studies have shown that high salinities and temperatures promote the proliferation and dissemination of Perkinsus marinus in several environments. In Brazil, the parasite infects native oysters Crassostrea gasar and Crassostrea rhizophorae in the Northeast (NE), where the temperature is high throughout the year. Despite the high prevalence of Perkinsus spp. infection in oysters from the NE of Brazil, no mortality events were reported by oyster farmers to date. The present study evaluated the effects of salinity (5, 20 and 35 psu) and temperature (15, 25 and 35 °C) on in vitro proliferation of P. marinus isolated from a host (C. rhizophorae) in Brazil, for a period of up to 15 days and after the return to the control conditions (22 days; recovery). Different cellular parameters (changes of cell phase's composition, cell density, viability and production of reactive oxygen species) were analysed using flow cytometry. The results indicate that the P. marinus isolate was sensitive to the extreme salinities and temperatures analysed. Only the highest temperature caused lasting cell damage under prolonged exposure, impairing P. marinus recovery, which is likely to be associated with oxidative stress. These findings will contribute to the understanding of the dynamics of perkinsiosis in tropical regions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of salinity and temperature on in vitro cell cycle and proliferation of Perkinsus marinus from Brazil
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of salinity and temperature on in vitro cell cycle and proliferation of Perkinsus marinus from Brazil
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of salinity and temperature on in vitro cell cycle and proliferation of Perkinsus marinus from Brazil
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – Campus I, 58051–900, João Pessoa, PB, Brazil. Tel: +55 83 32167643. Fax: +55 83 32167787. E-mail: queiroga_fr@hotmail.com

References

Hide All
Ascenso, R. M. T., Leite, R. B., Afonso, R. and Cancela, M. L. (2009). Expression pattern of Perkinsus olseni genes in response to bivalves with different susceptibility to perkinsosis. Journal of Fish Diseases 32, 633636.
Brandão, R. P., Boehs, G., Sabry, R. C., Ceuta, L. O., Luz, M. D. S. A., Queiroga, F. R. and da Silva, P. M. (2013). Perkinsus sp. infecting oyster Crassostrea rhizophorae (Guilding, 1828) on the coast of Bahia, Brazil. Journal of Invertebrate Pathology 112, 138–41.
Burreson, E. M. and Ragone Calvo, L. M. (1996). Epizootiology of Perkinsus marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985. Journal of Shellfish Research 15, 1434.
Burreson, E. M., Ragone Calvo, L. M., La Peyre, J. F., Counts, F. and Paynter, K. T. (1994). Acute osmotic tolerance of cultured cells of the oyster pathogen Perkinsus marinus (Apicomplexa:Perkinsida). Comparative Biochemistry and Physiology. Part A, Physiology 109, 575–82.
Cáceres-Martínez, J., Ortega, M. G., Vásquez-Yeomans, R., García, T. D. J. P., Stokes, N. A. and Carnegie, R. B. (2012). Natural and cultured populations of the mangrove oyster Saccostrea palmula from Sinaloa, Mexico, infected by Perkinsus marinus . Journal of Invertebrate Pathology 110, 321–5.
Casas, S. M., La Peyre, J. F., Reece, K. S., Azevedo, C. and Villalba, A. (2002). Continuous in vitro culture of the carpet shell clam Tapes decussatus protozoan parasite Perkinsus atlanticus . Diseases of Aquatic Organisms 52, 217–31.
Casas, S. M., Reece, K. S., Li, Y., Moss, J. a., Villalba, A. and La Peyre, J. F. (2008). Continuous culture of Perkinsus mediterraneus, a parasite of the European flat oyster Ostrea edulis, and characterization of its morphology, propagation, and extracellular proteins in vitro . Journal of Eukaryotic Microbiology 55, 3443.
Chen, M., Yang, H., Delaporte, M. and Zhao, S. (2007). Immune condition of Chlamys farreri in response to acute temperature challenge. Aquaculture 271, 479487.
Choi, K.-S. and Park, K.-I. (2010). Review on the protozoan parasite Perkinsus olseni (Lester and Davis 1981) infection in Asian waters. In Coastal Environmental and Ecosystem Issues of the East China Sea (ed. Ishimatsu, A. and Lie, H. J.), pp. 269281. TERRAPUB and Nagasaki University, Nagazaki.
Chu, F. E., Soudant, P., Volety, A K. and Huang, Y. (2000). Uptake and interconversion of fluorescent lipid analogs in the protozoan parasite, Perkinsus marinus, of the oyster, Crassostrea virginica . Experimental Parasitology 95, 240–51.
Chu, F.-L. E., Lund, E., Soudant, P. and Harvey, E. (2002). De novo arachidonic acid synthesis in Perkinsus marinus, a protozoan parasite of the Eastern oyster Crassostrea virginica . Molecular and Biochemical Parasitology 119, 179190.
Chu, F. L. E., Soudant, P. and Lund, E. D. (2003). Perkinsus marinus, a protozoan parasite of the Eastern oyster (Crassostrea virginica): effects of temperature on the uptake and metabolism of fluorescent lipid analogs and lipase activities. Experimental Parasitology 105, 121130.
Cooke, M. S., Evans, M. D., Dizdaroglu, M. and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology 17, 11951214.
da Silva, P. M., Tubino, R. V., Guertler, C., Ferreira, L. P., Santana, L. N., Fernández-boo, S., Ramilo, A., Cao, A. and Villalba, A. (2013). First report of the protozoan parasite Perkinsus marinus in South America, infecting mangrove oysters Crassostrea rhizophorae from the Paraíba River. Journal of Invertebrate Pathology 113, 96103.
da Silva, P. M., Scardua, M. P., Vianna, R. T., Mendonca, R. C., Vieira, C. B., Dungan, C. F., Scott, G. P. and Reece, K. S. (2014). Two Perkinsus spp. infect Crassostrea gasar oysters from cultured and wild populations of the Rio São Francisco estuary, Sergipe, northeastern Brazil. Journal of Invertebrate Pathology 119, 6271.
Dang, C., Dungan, C., Scott, G. and Reece, K. (2015). Perkinsus sp. infections and in vitro isolates from Anadara trapezia (mud arks) of Queensland, Australia. Diseases of Aquatic Organisms 113, 5158.
Dungan, C. F. and Hamilton, R. M. (1995). Use of a tetrazolium-based cell proliferation assay to measure effects of in vitro conditions on Perkinsus marinus (Apicomplexa) proliferation. The Journal of Eukaryotic Microbiology 42, 379388.
Dungan, C. F., Reece, K. S., Moss, J. a., Hamilton, R. M. and Diggles, B. K. (2007). Perkinsus olseni in vitro isolates from the New Zealand clam Austrovenus stutchburyi . The Journal of Eukaryotic Microbiology 54, 263–70.
Gauthier, J. D. and Vasta, G. R. (1993). Continuous in vitro culture of the eastern oyster parasite Perkinus marinus . Journal Invertebrate Pathology 62, 321323.
Gauthier, J. D. and Vasta, G. R. (1995). In vitro culture of the Eastern oyster parasite Perkinsus marinus: optimization of the methodology. Journal of Invertebrate Pathology 66, 156168.
Gullian-Klanian, M., Herrera-Silveira, J. A., Rodríguez-Canul, R. and Aguirre-Macedo, L. (2008). Factors associated with the prevalence of Perkinsus marinus in Crassostrea virginica from the southern Gulf of Mexico. Diseases of Aquatic Organisms 79, 237–47.
Hégaret, H., Wikfors, G. H. and Soudant, P. (2003). Flow cytometric analysis of haemocytes from Eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation. Journal of Experimental Marine Biology and Ecology 293, 249265.
Kelly, M. C., White, B. and Smyth, M. R. (2008). Separation of oxidatively damaged DNA nucleobases and nucleosides on packed and monolith C18 columns by HPLC-UV-EC. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 863, 181186.
La Peyre, J. F., Faisal, M. and Burreson, E. M. (1993). In vitro propagation of the protozoan Perkinsus marinus, a pathogen of the Eastern oyster, Crassostrea virginica . The Journal of Eukaryotic Microbiology 40, 304–301.
La Peyre, M., Casas, S. and La Peyre, J. (2006). Salinity effects on viability, metabolic activity and proliferation of three Perkinsus species. Diseases of Aquatic Organisms 71, 5974.
La Peyre, M. K., Casas, S. M., Gayle, W. and La Peyre, J. F. (2010). The combined influence of sub-optimal temperature and salinity on the in vitro viability of Perkinsus marinus, a protistan parasite of the Eastern oyster Crassostrea virginica . Journal of Invertebrate Pathology 105, 176–81.
Lambert, C., Soudant, P., Choquet, G. and Paillard, C. (2003). Measurement of Crassostrea gigas hemocyte oxidative metabolism by flow cytometry and the inhibiting capacity of pathogenic vibrios. Fish & Shellfish Immunology 15, 225240.
Lund, E. D., Chu, F.-L. E. and Harvey, E. (2004). In vitro effects of temperature and salinity on fatty acid synthesis in the oyster protozoan parasite Perkinsus marinus . Journal of Experimental Marine Biology and Ecology 307, 111126.
Lund, E. D., Chu, F.-L. E., Soudant, P. and Harvey, E. (2007). Perkinsus marinus, a protozoan parasite of the Eastern oyster, has a requirement for dietary sterols. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 146, 141–7.
Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101, 1330.
Mclaughlin, S. M. and Faisal, M. (1998). In vitro propagation of two Perkinsus species from the softshell clam Mya arenaria . Parasite 5, 341348.
Mittra, B. and Andrews, N. W. (2013). IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation. Trends in Parasitology 29, 489496.
Mylonas, C. and Kouretas, D. (1999). Lipid peroxidation and tissue damage. In Vivo 13, 295309.
OIE (2015). World Organisation for Animal Health. OIE-Listed diseases, infections and infestations. http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2015/
Oliver, L. M., Fisher, W. S., Ford, S. E., Calvo, L. M., Burreson, E. M., Sutton, E. B. and Gandy, J. (1998). Perkinsus marinus tissue distribution and seasonal variation in oysters Crassostrea virginica from Florida, Virginia and New York. Diseases of Aquatic Organisms 34, 5161.
Ordás, M. C. and Figueras, A. (1998). In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussatus . Diseases of Aquatic Organisms 33, 129136.
Queiroga, F. R., Golzio, J. E., Santos, R. B., Martins, T. O. and Vendel, A. L. (2012). Reproductive biology of Sciades herzbergii (Siluriformes: Ariidae) in a tropical estuary in Brazil. Zoologia 29, 397404.
Queiroga, F. R., Marques-Santos, L. F., Hégaret, H., Soudant, P., Farias, N. D., Schlindwein, A. D. and da Silva, P. M. (2013). Immunological responses of the mangrove oysters Crassostrea gasar naturally infected by Perkinsus sp. in the Mamanguape Estuary, Paraíba state (Northeastern, Brazil). Fish and Shellfish Immunology 35, 319327.
Queiroga, F. R., Vianna, R. T., Vieira, C. B., Farias, N. D. and da Silva, P. M. (2015). Parasites infecting the cultured oyster Crassostrea gasar (Adanson, 1757) in Northeast Brazil. Parasitology 142, 756766.
Robledo, J. A., Nunes, P. A., Cancela, M. L. and Vasta, G. R. (2002). Development of an in vitro clonal culture and characterization of the rRNA gene cluster of Perkinsus atlanticus, a protistan parasite of the clam Tapes decussatus . The Journal of Eukaryotic Microbiology 49, 414422.
Sauer, H., Wartenberg, M. and Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry 11, 173186.
Smolowitz, R. (2013). A review of current state of knowledge concerning Perkinsus marinus effects on Crassostrea virginica (Gmelin) (the eastern oyster). Veterinary Pathology 50, 404–11.
Soniat, T. M., Klinck, J. M., Powell, E. N. and Hofmann, E. E. (2012). Understanding the success and failure of oyster populations: periodicities of Perkinsus marinus, and oyster recruitment, mortality, and size. Journal of Shellfish Research 31, 635646.
Soudant, P. and Chu, F. L. (2001). Lipid class and fatty acid composition of the protozoan parasite of oysters, Perkinsus marinus cultivated in two different media. The Journal of Eukaryotic Microbiology 48, 309319.
Soudant, P., Chu, F. L. E. and Lund, E. D. (2005). Assessment of the cell viability of cultured Perkinsus marinus (Perkinsea), a parasitic protozoan of the Eastern oyster, Crassostrea virginica, using SYBRgreen-propidium iodide double staining and flow cytometry. The Journal of Eukaryotic Microbiology 52, 492499.
Soudant, P., E Chu, F.-L. and Volety, A. (2013). Host–parasite interactions: marine bivalve molluscs and protozoan parasites, Perkinsus species. Journal of Invertebrate Pathology 114, 196216.
Stadtman, E. R. and Berlett, B. S. (1998). Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metabolism Reviews 30, 225–43.
Stevens, T. L., Gibson, G. R., Adam, R., Maier, J., Allison-Ennis, M. and Das, S. (1997). Uptake and cellular localization of exogenous lipids by Giardia lamblia, a primitive eukaryote. Experimental Parasitology 86, 133143.
Sunila, I., Hamilton, R. M. and Dungan, C. F. (2001). Ultrastructural characteristics of the in vitro cell cycle of the protozoan pathogen of oysters, Perkinsus marinus . The Journal of Eukaryotic Microbiology 48, 348–61.
Umeda, K., Shimokawa, J. and Yoshinaga, T. (2013). Effects of temperature and salinity on the in vitro proliferation of trophozoites and the development of zoosporangia in Perkinsus olseni and P. honshuensis, both infecting manila clam. Fish Pathology 48, 1316.
Villalba, A., Reece, K. S., Camino Ordás, M., Casas, S. M. and Figueras, A. (2004). Perkinsosis in molluscs: a review. Aquatic Living Resources 17, 411432.
Villalba, A., Casas, S. M., López, C. and Carballal, M. J. (2005). Study of perkinsosis in the carpet shell clam Tapes decussatus in Galicia (NW Spain). II. Temporal pattern of disease dynamics and association with clam mortality. Diseases of Aquatic Organisms 65, 257–67.
Villalba, A., Gestal, C., Casas, S. M. and Figueras, A. (2011). Perkinsosis en moluscos. In Enfermedades de moluscos bilvalvos de interés en acuicultura (ed. Figueras, A. and Novoa, B.), pp. 181424. Fundación Observatorio Español de Acuicultura, Madrid.
Wardman, P. (2007). Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radical Biology and Medicine 43, 9951022.
Zhang, M., Shi, J. and Jiang, L. (2015). Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae . Electronic Journal of Biotechnology 18, 202209.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed