Skip to main content
    • Aa
    • Aa

Evidence for high levels of vertical transmission in Toxoplasma gondii

  • G. HIDE (a1), E. K. MORLEY (a1), J. M. HUGHES (a1), O. GERWASH (a1), M. S. ELMAHAISHI (a2), K. H. ELMAHAISHI (a2), D. THOMASSON (a1), E. A. WRIGHT (a1), R. H. WILLIAMS (a1), R. G. MURPHY (a1) and J. E. SMITH (a3)...

Toxoplasma gondii is a highly ubiquitous and prevalent parasite. Despite the cat being the only definitive host, it is found in almost all geographical areas and warm blooded animals. Three routes of transmission are recognised: ingestion of oocysts shed by the cat, carnivory and congenital transmission. In natural populations, it is difficult to establish the relative importance of these routes. This paper reviews recent work in our laboratory which suggests that congenital transmission may be much more important than previously thought. Using PCR detection of the parasite, studies in sheep show that congenital transmission may occur in as many as 66% of pregnancies. Furthermore, in families of sheep on the same farm, exposed to the same sources of oocysts, significant divergent prevalences of Toxoplasma infection and abortion are found between different families. The data suggest that breeding from infected ewes increases the risk of subsequent abortion and infection in lambs. Congenital transmission rates in a natural population of mice were found to be 75%. Interestingly, congenital transmission rates in humans were measured at 19·8%. The results presented in these studies differ from those of other published studies and suggest that vertical transmission may be much more important than previously thought.

Corresponding author
*Corresponding author: Geoff Hide, Centre for Parasitology and Disease, School of Environment and Life Sciences, University of Salford, Salford, UK, M5 4WT. Tel: 0044-161-295-3371. Fascimile No: 0044-161-295-5015. E-mail:
Hide All
T. V. Aspinall , D. Marlee , J. E. Hyde and P. F. G. Sims (2002). Prevalence of Toxoplasma gondii in commercial meat products as monitored by polymerase chain reaction – food for thought? International Journal for Parasitology 32, 11931199.

J. K. A. Beverley (1959). Congenital transmission of Toxoplasmosis through successive generation of mice. Nature 183, 13481349.

K. M. Boyer , E. Holfels , N. Roizen , C. Swisher , D. Mack , J. Remington , S. Withers , P. Meier and R. McLeod (2005). Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: implications for prenatal management and screening. American Journal of Obstetrics and Gynecology 192, 564571.

D. Buxton , S. W. Maley , S. E. Wright , S. Rodger , P. Bartley and E. A. Innes (2007 a). Toxoplasma gondii and ovine toxoplasmosis: New aspects of an old story. Veterinary Parasitology 149, 2528.

D. Buxton , S. M. Rodger , S. W. Maley and S. E. Wright (2006). Toxoplasmosis: The possibility of vertical transmission. Small Ruminant Research 62, 4346.

J. P. Dubey (2009 a). History of the discovery of the life cycle of Toxoplasma gondii. International Journal for Parasitology 39, 877882.

J. P. Dubey , D. E. Hill , J. L. Jones , A. W. Hightower , E. Kirkland , J. M. Roberts , P. L. Marcet , T. Lehmann , M. C. B. Vianna , K. Miska , C. Sreekumar , O. C. H. Kwok , S. K. Shen and H. R. Gamble (2005). Prevalence of viable Toxoplasma gondii in beef, chicken and pork from retail meat stores in the United States: risk assessment to consumers. Journal of Parasitology 91, 10821093.

J. P. Dubey , R. M. Weigel , A. M. Siegel , P. Thulliez , U. D. Kitron , M. A. Mitchell , A. Mannelli , N. E. Mateuspinillia , S. K. Shen , O. C. H. Kwok and K. S. Todd (1995). Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. Journal of Parasitology. 81, 723729.

P. Duncanson , R. S. Terry , J. E. Smith and G. Hide (2001). High levels of congenital transmission of Toxoplasma gondii in a commercial sheep flock. International Journal for Parasitology 31, 16991703.

M. E. Grigg and N. Sundar (2009). Sexual recombination punctuated by outbreaks and clonal expansions predicts Toxoplasma gondii population genetics. International Journal for Parasitology 39, 925933.

W. J. Hartley and S. C. Marshall (1957). Toxoplasmosis as a cause of ovine perinatal mortality. New Zealand Veterinary Journal 5, 119124.

J. M. Hughes , D. Thomasson , P. S. Craig , S. Georgin , A. Pickles and G. Hide (2008). Neospora caninum: detection in wild rabbits and investigation of co-infection with Toxoplasma gondii by PCR analysis. Experimental Parasitology 120, 255260.

W. M. Hutchison , J. F. Dunachie , J. C. Siim and K. Work (1969). Life cycle of Toxoplasma gondii. British Medical Journal 4, 806806.

A. Kijlstra , B. Meerburg , J. Cornelissen , S. De Craeye , P. Vereijken and E. Jongert (2008). The role of rodents and shrews in the transmission of Toxoplasma gondii to pigs. Veterinary Parasitology 156, 183190.

C. McColgan , D. Buxton and D. A. Blewett (1988). Titration of Toxoplasma gondii oocysts in non-pregnant sheep and the effects of subsequent challenge during pregnancy. Veterinary Record 123, 467470.

M. A. Miller , I. A. Gardner , C. Kreuder , D. M. Paradies , K. R. Worcester , D. A. Jessup , E. Dodd , M. D. Harris , J. A. Ames , A. E. Packham and P. A. Conrad (2002). Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). International Journal for Parasitology 32, 9971006.

R. G. Murphy , R. H. Williams , J. M. Hughes , G. Hide , N. J. Ford and D. J. Oldbury (2008). The urban house mouse (Mus domesticus) as a reservoir of infection for the human parasite Toxoplasma gondii: an unrecognised public health issue? International Journal of Environmental Health Research 18, 177185.

M. R. Owen and A. J. Trees (1998). Vertical transmission of Toxoplasma gondii from chronically infected house (Mus musculus) and field (Apodemus sylvaticus) mice determined by polymerase chain reaction. Parasitology 116, 299304.

K. W. Prestrud , K. Asbakk , T. Mørk , E. Fuglei , M. Tryland and C. Su (2008 b). Direct high-resolution genotyping of Toxoplasma gondii in arctic foxes (Vulpes lagopus) in the remote arctic Svalbard archipelago reveals widespread clonal Type II lineage. Veterinary Parasitology 158, 121128.

K. W. Prestrud , J. P. Dubey , K. Asbakk , E. Fuglei and C. Su (2008 a). First isolate of Toxoplasma gondii from arctic fox (Vulpes lagopus) from Svalbard. Veterinary Parasitology 151, 110114.

L. D. Sibley and J. C. Boothroyd (1992). Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359, 8285.

C. Su , D. Evans , R. H. Cole , J. C. Kissinger , J. W. Ajioka and L. D. Sibley (2003). Recent expansion of Toxoplasma through enhanced oral transmission. Science 299, 414416.

A. M. Tenter , A. R. Heckeroth and L. M. Weiss (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.

A. J. Trees and D. J. L. Williams (2005). Endogenous and exogenous transplacental infection in Neospora caninum and Toxoplasma gondii. Trends in Parasitology 21, 558561.

L. M. Weiss and J. P. Dubey (2009). Toxoplasmosis: A history of clinical observations. International Journal for Parasitology 39, 895901.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 8
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 259 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.