Skip to main content Accessibility help

Evolution of host range in the follicle mite Demodex kutzeri



The sequences of four mitochondrial genes were determined for Demodex mites isolated from two distantly related species within the family Cervidae, and identified morphologically as belonging to the species Demodex kutzeri. The sequences were used to test the hypothesis that Demodex are strictly host-specific, and hence cospeciate with their hosts: (1) The estimated divergence time between mites found on elk vs humans agreed closely with a previous estimate of the time that these host species last shared a common ancestor, suggesting cospeciation of mites and hosts, at least over long evolutionary timescales. (2) The extremely low levels of sequence divergence between the mites found on elk vs mule deer hosts indicated that these mites belong to the same species, which suggests that Demodex are able to move across host species boundaries over shorter timescales. Together, the results are consistent with the model that Demodex mites are not strict host-specialists, but instead lose the ability to move between host lineages gradually.


Corresponding author

*Corresponding author: Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA. E-mail:


Hide All
Abernethy, K. (1994). The establishment of a hybrid zone between Red and Sika deer (genus Cervus). Molecular Ecology 3, 551562.
Barriga, O. O., Al-Khalidi, N. W., Martin, S. and Wyman, M. (1992). Evidence of immunosuppression by Demodex canis . Veterinary Immunology and Immunopathology 32, 3746.
Benmayor, R., Hodgson, D. J., Perron, G. G. and Buckling, A. (2009). Host mixing and disease emergence. Current Biology 19, 764767.
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K. and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22, 148155.
Bukva, V. (1987). Demodex kutzeri sp. n. (Acari: Demodicidae), an idenitical parasite of two species of deer, Cervus elaphus and C. nippon pseudaxis . Folia Parasitologica 34, 173181.
Bukva, V. (1990). Transmission of Demodex flagellurus (Acari: Demodicidae) in the house mouse, Mus musculus, under laboratory conditions. Experimental and Applied Acarology 10, 5360.
Bukva, V., Vitovec, J., Moucha, P. and Vahala, J. (1988). Pathological process induced by Demodex sp. (Acari: Demodicidae) in the skin of the eland, Taurotragus oryx (Pallas). Folia Parasitologica 35, 8791.
Combes, C. (2001). Parasitism: The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago.
Desch, C. E. (1987). Redescription of Demodex nanus (Acari: Demodicidae) from Rattus norvegicus and R. rattus (Rodentia). Journal of Medical Entomology 24, 1923.
Desch, C. E. (2009). Human hair follicle mites and forensic acarology. Experimental and Applied Acarology 49, 143146.
Desch, C. E. and Nutting, W. B. (1972). Demodex folliculorum (Simon) and D. brevis Akbulatova of man: redescription and reevalution. Journal of Parasitology 58, 169177.
Desch, C. E., Lukoschus, F. S. and Nadchatram, M. (1984). A new demodicid (Acari: Demodicidae) from the meibomian glands of Southeast Asian rats (Rodentia: Muridae). Tropical Biomedicine 1, 5562.
Desch, C. E., Andrews, J. J., Baeten, L. A., Holder, Z., Powers, J. G., Weber, D. and Ballweber, L. R. (2010). New records of hair follicle mites (Demodecidae) from North American Cervidae. Journal of Wildlife Diseases 46, 585590.
dos Reis, M., Inoue, J., Hasegawa, M., Asher, R. J., Donoghue, P. C. J. and Yang, Z. (2012). Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society of London B: Biological Sciences 279, 34913500.
Drummond, A. J., Suchard, M. A., Xie, D. and Rambaut, A. (2012). Bayesian phylogenetics with BEAUTi and the BEAST 1·7. Molecular Biology and Evolution 29, 19691973.
Dunlop, J. A. and Selden, P. A. (2009). Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Experimental and Applied Acarology 48, 183197.
Ferreira, D., Sastre, N., Ravera, I., Altet, L., Francino, O., Bardagí, M. and Ferrer, L. (2015). Identification of a third feline Demodex species through partial sequencing of the 16S rDNA and frequency of Demodex species in 74 cats using a PCR assay. Veterinary Dermatology 26, 239–e53.
Garamszegi, L. Z. (2006). The evolution of virulence and host specialization in malaria parasites of primates. Ecology Letters 9, 933940.
Gilbert, C., Ropiquet, A. and Hassanin, A. (2006). Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution 40, 101117.
Ivy, S. P., Mackall, C. L., Gore, L., Gress, R. E. and Hartley, A. H. (1995). Demodicidosis in childhood acute lymphoblastic leukemia; an opportunistic infection occurring with immunosuppression. Journal of Pediatrics 127, 751754.
Jarmuda, S., O'Reilly, N., Zaba, R., Jakubowicz, O., Szkaradkiewicz, A. and Kavanagh, K. (2012). Potential role of Demodex mites and bacteria in the induction of rosacea. Journal of Medical Microbiology 61, 15041510.
Johnson, K. P., Allen, J. M., Olds, B. P., Mugisha, L., Reed, D. L., Paige, K. N. and Pittendrigh, B. R. (2014). Rates of genomic divergence in humans, chimpanzees and their lice. Proceedings of the Royal Society B: Biological Sciences 281, 20132174.
Kim, K. T., Lee, S. H. and Kwak, D. (2015). Treatment of naturally acquired demodectic mange with amitraz in two harbour seals (Phoca vitulina). Acta Veterinaria Hungarica 63, 352357.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.
Lacey, N., Raghallaigh, S. N. and Powell, F. C. (2011). Demodex mites – commensals, parasites or mutualistic organisms? Dermatology 222, 128130.
Lankton, J. S., Chapman, A., Ramsay, E. C., Kania, S. A. and Newkirk, K. M. (2013). Preputial Demodex species in big brown bats (Eptesicus fuscus) in eastern Tennessee. Journal of Zoo and Wildlife Medicine 44, 124129.
Leggett, H. C., Buckling, A., Long, G. H. and Boots, M. (2013). Generalism and the evolution of parasite virulence. Trends in Ecology and Evolution 28, 592596.
Longdon, B., Hadfield, J. D., Webster, C. L., Obbard, D. J. and Jiggins, F. M. (2011). Host phylogeny determines viral persistence and replication in novel hosts. PLoS Pathogens 7, 19.
Matthes, H. F. (1994). Investigations of pathogenesis of cattle demodicosis: sites of predilection, habitat and dynamics of demodectic nodules. Veterinary Parasitology 53, 283291.
Nutting, W. B. (1976). Hair follicle mites (Demodex spp.) of medical and veterinary concern. The Cornell Veterinarian 66, 214231.
Nutting, W. B. and Desch, C. E. (1979). Relationships between mammalian and demodicid phylogeny. In Recent Advances in Acarology, Vol. 2 (ed. Rodriguez, J. G.), pp. 339345. Academic Press, New York.
Palopoli, M. F., Minot, S., Pei, D., Satterly, A. and Endrizzi, J. (2014). Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics 15, 1124.
Palopoli, M. F., Fergus, D. J., Minot, S., Pei, D. T., Simisond, W. B., Fernandez-Silvad, I., Thoemmes, M. S., Dunn, R. R. and Trautwein, M. (2015). Global divergence of the human follicle mite Demodex folliculorum: persistent associations between host ancestry and mite lineages. Proceedings of the National Academy of Sciences of the United States of America 112, 1595815963.
Penn, O., Privman, E., Ashkenazy, H., Landan, G., Graur, D. and Pupko, T. (2010). GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research 38, W23W28.
Perlman, S. J. and Jaenike, J. (2003). Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution 57, 544557.
Pitraa, C., Fickela, J., Meijaardb, E. and Groves, P. C. (2004). Evolution and phylogeny of old world deer. Molecular Phylogenetics and Evolution 33, 880895.
Singh, S. K. and Dimri, U. (2014). The immuno-pathological conversions of canine demodicosis. Veterinary Parasitology 203, 15.
Sorenson, M. D., Balakrishnan, C. N. and Payne, R. B. (2004). Clade-limited colonization in brood parasitic finches (Vidua spp.). Systematic Biology 53, 140153.
Spickett, S. G. (1961). Studies on Demodex folliculorum Simon. Parasitology 51, 181192.
Streicker, D. G., Turmelle, A. S., Vonhof, M. J., Kuzmin, I. V., McCracken, F. and Rupprecht, C. E. (2010). Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676679.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 27252729.
Valerius, G. (1998). Deer of the World: Their Evolution, Behaviour, and Ecology. Stackpole Books, Mechanicsburg, PA.
Zhao, Y. E., Wu, L. P., Hu, L. and Xu, J. R. (2012). Association of blepharitis with Demodex: a meta-analysis. Ophthalmic Epidemiology 19, 95102.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed