Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T05:31:16.765Z Has data issue: false hasContentIssue false

The first detection of Toxoplasma gondii DNA in environmental air samples using gelatine filters, real-time PCR and loop-mediated isothermal (LAMP) assays: qualitative and quantitative analysis

Published online by Cambridge University Press:  12 July 2017

ANNA LASS*
Affiliation:
State Key Laboratory of Plateau Ecology and Agriculture, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 9b Powstania Styczniowego Str., 81-519 Gdynia, Poland
BEATA SZOSTAKOWSKA
Affiliation:
Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 9b Powstania Styczniowego Str., 81-519 Gdynia, Poland
KRZYSZTOF KORZENIEWSKI
Affiliation:
Epidemiology and Tropical Medicine Department in Gdynia, Military Institute of Medicine in Warsaw, Grudzinskiego St. 4, 81-103 Gdynia, Poland
PANAGIOTIS KARANIS*
Affiliation:
State Key Laboratory of Plateau Ecology and Agriculture, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China
*
*Corresponding authors: State Key Laboratory of Plateau Ecology and Agriculture, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China; and Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 9b Powstania Styczniowego Str., 81-519 Gdynia, Poland. E-mail: anna.ls1@gumed.edu.pl; panagiotis.karanis@uk-koeln.de
*Corresponding authors: State Key Laboratory of Plateau Ecology and Agriculture, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China; and Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 9b Powstania Styczniowego Str., 81-519 Gdynia, Poland. E-mail: anna.ls1@gumed.edu.pl; panagiotis.karanis@uk-koeln.de

Summary

Toxoplasma gondii infections are acquired through the ingestion of oocysts present in the environment. However, there is no data about their occurrence in the air or about airborne transmission of these infections. In the present paper, we report on the identification of T. gondii using rapid molecular detection methods, supported by microscopic analysis, in environmental air samples. A total of 71 samples were collected, using gelatine filters, from kitchen gardens, recreational areas and sandpits located in northern and north-eastern Poland. Material recovered from the filters was analysed using real-time PCR and loop-mediated isothermal assays targeting the T. gondii B1 gene. Toxoplasma gondii DNA was found in two samples, as confirmed by both molecular assays. Genotyping at the SAG2 locus showed Toxoplasma SAG2 type I. Moreover, the presence of T. gondii oocysts was confirmed in one of the positive samples with the use of microscopy. The results showed that T. gondii may be present in environmental air samples and that respiratory tract infections may play a role in the high prevalence of toxoplasmosis in humans and animals. To the best of our knowledge, this is the first epidemiological evidence that oro-fecal and foodborne toxoplasmosis may be traceable to an airborne respiratory origin and that this may represent a new, previously unknown transmission route for this disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, E., Lemoine, M., Poulle, M. L., Ravat, M. C., Romand, S., Thulliez, P., Villena, I., Aubert, D., Rabilloud, M., Riche, B. and Gilot- Fromont, E. (2008). Spatial distribution of soil contamination by Toxoplasma gondii in relation to cat defecation behavior in an urban area. International Journal for Parasitology 38, 10171023.Google Scholar
Ajzenberg, D., Bañuls, A. L., Su, C., Dumètre, A., Demar, M., Carme, B. and Dardé, M. L. (2004). Genetic diversity, clonality and sexuality in Toxoplasma gondii . International Journal for Parasitology 34, 11851196.CrossRefGoogle ScholarPubMed
Aramini, J. J., Stephen, C., Dubey, J. P., Engelstoft, C., Schwantje, H. and Ribble, C. S. (1999). Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiology and Infection 122, 305315.Google Scholar
Arkush, K. D., Miller, M. A., Leutenegger, Ch. M., Gardner, I. A., Packham, A. E., Heckeroth, A. R., Tenter, A. M., Barr, B. C. and Conrad, P. A. (2003). Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). International Journal for Parasitology 33, 10871097.Google Scholar
Aspinall, T. V., Guy, E. C., Roberts, K. E., Joynson, D. H. M., Hyde, J. E. and Sims, P. F. G. (2003). Molecular evidence for multiple Toxoplasma gondii infections in individual patients in England and Wales: public health implications. International Journal for Parasitology 33, 97103.Google Scholar
Aubert, D. and Villena, I. (2009). Detection of Toxoplasma gondii oocysts in water: proposition of a strategy and evaluation in Champagne-Ardenne Region, France. Memórias do Instituto Oswaldo Cruz (Rio de Janeiro) 104, 290295.Google Scholar
Baldursson, S. and Karanis, P. (2011). Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004–2010. Water Research 45, 6603–14.Google Scholar
Beazley, D. M. and Egerman, R. S. (1998). Toxoplasmosis. Seminars in Perinatology 22, 332338.Google Scholar
Benenson, M. W., Takafuji, E. T., Lemon, S. M., Greenup, R. L. and Sulzer, A. J. (1982). Oocyst-transmitted toxoplasmosis associated with ingestion of contaminated water. New England Journal of Medicine 307, 666669.Google Scholar
Bowie, W. R., King, A. S., Werker, D. H., Isaac-Renton, J. L., Bell, A., Eng, S. B. and Marion, S. A. (1997). Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 350, 173177.Google Scholar
Burg, J. L., Grover, C. M., Pouletty, P. and Boothroyd, J. C.(1989). Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. Journal of Clinical Microbiology 27, 17871792.Google Scholar
Cook, A. J. C., Gilbert, R. E., Buffolano, W., Zufferey, J., Petersen, E., Jenum, P. A., Foulon, W., Semprini, A. E. and Dun, D. T. (2000). Sources of Toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. BMJ 321, 142147.CrossRefGoogle ScholarPubMed
Coutinho, S. G., Lobo, R. and Dutra, G. (1982). Isolation of Toxoplasma from the soil during an outbreak of toxoplasmosis in a rural area in Brazil. Journal of Parasitology 68, 866868.Google Scholar
DeBoer, S. L. (2004). Emergency Newborn Care. Trafford Publishing p. 30. ISBN 978-1-4120-3089-2.Google Scholar
de Moura, L., Bahia-Oliveira, L. M. G., Wada, M. Y., Jones, J. L., Tuboi, S. H., Carmo, E. H., Ramalho, W. M., Camargo, N. J., Trevisan, R., Graça, R. M. T., da Silva, A. J., Moura, I., Dubey, J. P. and Garrett, D. O. (2006). Waterborne toxoplasmosis, Brazil, from field to gene. Emerging Infectious Diseases 12, 326329.CrossRefGoogle Scholar
Dubey, J. P., Jenkins, M. C. and Thayer, D. W. (1996). Irradiation killing of Toxoplasma gondii oocysts. Journal of Eukaryotic Microbiology 43, 123S.CrossRefGoogle ScholarPubMed
Dubey, J. P., Thayer, D. W., Speer, C. A. and Shen, S. K. (1998). Effect of gamma irradiation on unsporulated and sporulated Toxoplasma gondii oocysts. International Journal for Parasitology 28, 369375.Google Scholar
Dumètre, A. and Dardé, M. L. (2003). How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews 27, 651661.Google Scholar
Efstratiou, A., Ongerth, O. and Karanis, P. (2017). Waterborne transmission of protozoan parasites: review of worldwide outbreaks - An update 2011–2015. Water Research 114, 1422.CrossRefGoogle Scholar
Fayer, R., Dubey, J. P. and Lindsay, D. S. (2004). Zoonotic protozoa: from land to sea. Trends in Parasitology 20, 531536.Google Scholar
Frenkel, J. K. and Dubey, J. P. (1973). Effects of freezing on the viability of Toxoplasma oocysts. Journal of Parasitology 59, 587588.Google Scholar
Frenkel, J. K., Ruiz, A. and Chinchilla, M. (1975). Soil survival of Toxoplasma oocysts in Kansas and Costa Rica. American Journal of Tropical Medicine and Hygiene 24, 439443.CrossRefGoogle ScholarPubMed
Gallas-Lindemann, C., Sotiriadou, I., Mahmoodi, M. R. and Karanis, P. (2013). Detection of Toxoplasma gondii oocysts in different water resources by loop mediated isothermal amplification (LAMP). Acta Tropica 125, 231–6.Google Scholar
Howe, D. K., Honore, S., Derouin, F. and Sibley, L. D. (1997). Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis. Journal of Clinical Microbiology 35, 14111414.Google Scholar
Henriksen, S. A. and Pohlenz, J. F. (1981). Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Veterinaria Scandinavica 22, 594–6.Google Scholar
Isaac-Renton, J., Bowie, W. R., King, A., Irwin, G. S., Ong, C. S., Fung, C. P., Shokeir, M. O. and Dubey, J. P. (1998). Detection of Toxoplasma gondii oocysts in drinking water. Applied Environmental Microbiology 64, 22782280.Google Scholar
Israelski, D. M. and Remington, J. S. (1993). Toxoplasmosis in the non-AIDS immunocompromised host. Current Clinical Topics in Infectious Diseases 13, 322356.Google Scholar
Karanis, P., Kourenti, C. and Smith, H. (2007). Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. Journal of Water and Health 5, 138.Google Scholar
Karanis, P., Aldeyarbi, H. M., Mirhashemi, M. E. and Khalil, K. M. (2013). The impact of the waterborne transmission of Toxoplasma gondii and analysis efforts for water detection: an overview and update. Environmental Science and Pollution Research 20, 8699.Google Scholar
Koloren, Z. (2014). Sensitive and cost-effective detection of Toxoplasma gondii in water supplies of the Black Sea in Turkey by loop-mediated isothermal amplification (LAMP). Biotechnology and Biotechnological Equipment 27, 35433546.Google Scholar
Koloren, Z. and Demirel, E. (2013). Detection of Toxoplasma gondii in turkish river and drinking water samples by different PCR and LAMP Methods. CLEAN – Soil, Air, Water 41, 963968.CrossRefGoogle Scholar
Kourenti, C. and Karanis, P. (2004). Development of a sensitive polymerase chain reaction method for the detection of Toxoplasma gondii in water. Water Science and Technology 50, 287–91.CrossRefGoogle ScholarPubMed
Kourenti, C. and Karanis, P. (2006). Evaluation and applicability of a purification method coupled with nested PCR for the detection of Toxoplasma oocysts in water. Letters in Applied Microbiology 43, 475481.CrossRefGoogle ScholarPubMed
Kourenti, C., Heckeroth, A., Tenter, A. and Karanis, P. (2003). Development and application of different methods for the detection of Toxoplasma gondii in water. Applied and Environmental Microbiology 69, 102106.Google Scholar
Lass, A., Pietkiewicz, H., Modzelewska, E., Dumètre, A., Szostakowska, B. and Myjak, P. (2009). Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. European Journal of Clinical Microbiology and Infectious Diseases 28, 599605.Google Scholar
Lass, A., Pietkiewicz, H., Szostakowska, B. and Myjak, P. (2012). The first detection of Toxoplasma gondii DNA in environmental fruits and vegetables samples. European Journal of Clinical Microbiology and Infectious Diseases 31, 1101–8.Google Scholar
Lei, Y., Davey, M. and Ellis, J. (2005). Autofluorescence of Toxoplasma gondii and Neospora caninum cysts in vitro. Journal of Parasitology 91, 1723.CrossRefGoogle ScholarPubMed
Lindh, W. Q., Pooler, M., Tamparo, C. and Dahl, B. (2009). Delmar's comprehensive medical assisting: administrative and clinical competencies. Cengage Learning 573. ISBN 978-1-4354-1914-8.Google Scholar
Luft, B. J. and Remington, J. S. (1992). Toxoplasmic encephalitis in AIDS. Clinical Infectious Diseases 15, 211222.CrossRefGoogle ScholarPubMed
Matricardi, P. M., Rosmini, F., Riondino, S., Fortini, M., Ferrigno, L., Rapicetta, M. and Bonini, S. (2000). Exposure to foodborne and oro-fecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. British Medical Journal 12, 412–7.Google Scholar
Michalski, M. M., Platt-Samoraj, A. and Mikulska-Skupień, E. (2010). Toxoplasma gondii antibodies in domestic cats in Olsztyn urban area, Poland. Wiadomości Parazytologiczne 56, 277279.Google Scholar
Montoya, J. G. and Remington, J. S. (1995). Studies on the serodiagnosis of toxoplasmic lymphadenitis. Clinical Infectious Diseases 20, 781789.Google Scholar
Nowakowska, D., Colón, I., Remington, J. S., Grigg, M., Gołąb, E., Wilczyński, J. and Sibley, L. D. (2006). Genotyping of Toxoplasma gondii by multiplex PCR and peptide-based serological testing of samples from infants in Poland diagnosed with congenital toxoplasmosis. Journal of Clinical Microbiology 44, 13821389.Google Scholar
Pawłowski, Z. S. (2002). Toxoplasmosis in Poznan region, Poland 1990–2000. Przeglad Epidemiologiczny 56, 409417.Google Scholar
Petersen, E. and Dubey, J. P. (2001). Biology of Toxoplasma gondii . In Toxoplasmosis: a Comprehensive Clinical Guide. (ed. Joynson, D. H. M. and Wreghitt, T.), pp. 149. Cambridge University Press, Cambridge, UK.Google Scholar
Robert-Gangneux, F. and Dardé, M. L. (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews 25, 264–96.Google Scholar
Rosado-García, F. M., Guerrero, F. M., Karanis, G., Hinojos, M. D. C. and Karanis, P. (2017). Water-borne protozoa parasites: the Latin American perspective. International Journal of Hygiene and Environmental Health 220, 783798.Google Scholar
Sotiriadou, I. and Karanis, P. (2008). Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water samples and comparative findings by polymerase chain reaction and immunofluorescence test (IFT). Diagnostic Microbiology and Infectious Diseases 62, 357365.Google Scholar
Schwab, K. J. and McDevitt, J. J. (2003). Development of PCR–enzyme immunoassay oligoprobe detection method for Toxoplasma gondii oocyst incorporating PCR controls. Applied Environmental Microbiology 69, 58195825.Google Scholar
Smielewska-Loś, E. and Pacoń, J. (2002). Toxoplasma gondii infection of cats in epizootiological and clinical aspects. Polish Journal of Veterinary Sciences 5, 227230.Google Scholar
Sroka, J., Wójcik-Fatla, A. and Dutkiewicz, J. (2006). Occurrence of Toxoplasma gondii in water from wells located on farms. Annals of Agricultural and Environmental Medicine 13, 169175.Google Scholar
Sroka, J., Zwoliński, J. and Dutkiewicz, J. (2007). Seroprevalence of Toxoplasma gondii in farm and wild animals from the area of Lublin province. Bulletin of Veterinary Institute in Pulawy 51, 535540.Google Scholar
Sroka, J., Wójcik-Fatla, A., Szymańsk, J., Dutkiewicz, J., Zając, V. and Zwoliński, J. (2010). The occurrence of Toxoplasma gondii infection in people and animals from rural environment of Lublin region – estimate of potential role of water as a source of infection. Annals of Agricultural and Environmental Medicine 17, 125132.Google Scholar
Szewczyk-Kramska, B. (1999) Toksoplazmoza i toksokaroza u dzieci w Wielkopolsce. Nowiny Lekarskie 68, 621.Google Scholar
Verant, M. L., d'Ozouville, N., Parker, P. G., Shapiro, K., Van Wormer, E. and Deem, S. L. (2014). Attempted detection of Toxoplasma gondii oocysts in environmental waters using a simple approach to evaluate the potential for waterborne transmission in the Galápagos Islands, Ecuador. Eco health 11, 207–14.Google Scholar
Villena, I., Aubert, D., Gomis, P., Ferté, H., Inglard, J. Ch., Denis-Bisiaux, H., Dondon, J. M., Pisano, E., Ortis, N. and Pinon, J. M. (2004). Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Applied and Environmental Microbiology 70, 40354039.Google Scholar
Wells, B., Shaw, H., Innocent, G., Guido, S., Hotchkiss, E., Parigi, M., Opsteegh, M., Green, J., Gillespie, S., Innes, E. A. and Katzer, F. (2015). Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529 bp real-time PCR and ITS1 nested PCR. Water Research 87, 175–81.Google Scholar
Wong, S. Y., Remington, J. S. (1994). Toxoplasmosis in pregnancy. Clinical Infectious Diseases 18, 853861.CrossRefGoogle ScholarPubMed