Skip to main content

High rates of infection by blood parasites during the nestling phase in UK Columbids with notes on ecological associations


Studies of blood parasite infection in nestling birds rarely find a high prevalence of infection. This is likely due to a combination of short nestling periods (limiting the age at which nestlings can be sampled) and long parasite prepatent periods before gametocytes can be detected in peripheral blood. Here we examine rates of blood parasite infection in nestlings from three Columbid species in the UK. We use this system to address two key hypotheses in the epidemiology of avian haemoparasites: first, that nestlings in open nests have a higher prevalence of infection; and second, that nestlings sampled at 14 days old have a higher apparent infection rate than those sampled at 7 days old. Open-nesting individuals had a 54% infection rate compared with 25% for box-nesters, probably due to an increased exposure of open-nesting species to dipteran vectors. Nestlings sampled at 14 days had a 68% infection rate compared with 32% in nestlings sampled at 7 days, suggesting that rates of infection in the nest are high. Further work should examine nestlings post-fledging to identify rates of successful parasite infection (as opposed to abortive development within a dead-end host) as well as impacts on host post-fledging survival and behaviour.

Corresponding author
*Corresponding authors: School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7TS, UK. E-mail: and Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK. E-mail:
Hide All
† These authors contributed equally to the manuscript.
Hide All
Beadell, J. S., Gering, E., Austin, J., Dumbacher, J. P., Peirce, M. A., Pratt, T. K., Atkinson, C. T. and Fleischer, R. C. (2004). Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Molecular Ecology 13, 38293844.
Bensch, S., Hellgren, O. and Pérez-Tris, J. (2009). MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources 9, 13531358.
Calero-Riestra, M. and García, J. T. (2016). Sex-dependent differences in avian malaria prevalence and consequences of infections on nestling growth and adult condition in the Tawny pipit, Anthus campestris . Malaria Journal 15, 178.
Chagas, C. R. F., de Guimarães, L. O., Monteiro, E. F., Valkiūnas, G., Katayama, M. V., Santos, S. V., Guida, F. J. V., Simões, R. F. and Kirchgatter, K. (2016). Hemosporidian parasites of free-living birds in the São Paulo Zoo, Brazil. Parasitology Research 115, 14431452.
Cosgrove, C. L., Knowles, S. C. L., Day, K. P. and Sheldon, B. C. (2006). No evidence for avian malaria infection during the nestling phase in a passerine bird. Journal of Parasitology 92, 13021304.
Davis, A. K., Maney, D. L. and Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology 22, 760772.
Drovetski, S. V., Aghayan, S. A., Mata, V. A., Lopes, R. J., Mode, N. A., Harvey, J. A. and Voelker, G. (2014). Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian Haemosporidia? Molecular Ecology 23, 33223329.
Dunn, J. C., Goodman, S. J., Benton, T. G. and Hamer, K. C. (2013). Avian blood parasite infection during the non-breeding season: an overlooked issue in declining populations? BMC Ecology 13, 30.
Dunn, J. C., Morris, A. J. and Grice, P. V. (2015). Testing bespoke management of foraging habitat for European turtle doves Streptopelia turtur . Journal for Nature Conservation 25, 2334.
Fallon, S. M., Bermingham, E. and Ricklefs, R. E. (2003). Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution 57, 606615.
Figuerola, J., Munoz, E., Gutierrez, R. and Ferrer, D. (1999). Blood parasites, leucocytes and plumage brightness in the Cirl Bunting, Emberiza cirlus . Functional Ecology 13, 594601.
Hasselquist, D. and Nilsson, J.-Å. (2012). Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Animal Behaviour 83, 13031312.
Ishak, H. D., Dumbacher, J. P., Anderson, N. L., Keane, J. J., Valkiūnas, G., Haig, S. M., Tell, L. A. and Sehgal, R. N. M. (2008). Blood parasites in owls with conservation implications for the Spotted Owl (Strix occidentalis). PLoS ONE 3, e2304.
Jeffries, M. I., Miller, R., Laskowski, M. and Carlisle, J. (2015). High Prevalence of Leucocytozoon Parasites in Nestling Northern Goshawks (Accipiter gentilis) in the Northern Great Basin, USA. Journal of Raptor Research 3, 294302.
Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. and Sheldon, B. C. (2011). Fitness effects of endemic malaria infections in a wild bird population: the importance of ecological structure. Journal of Animal Ecology 80, 11961206.
Merino, S., Moreno, J., Vásquez, R., Martínez, J., Sánchez-Monsálvez, I., Estades, C., Ippi, S., Sabat, P., Rozzi, R. and McGekee, S. (2008). Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology 33, 329340.
Quillfeldt, P., Martínez, J., Bugoni, L., Mancini, P. L. and Merino, S. (2014). Blood parasites in noddies and boobies from Brazilian offshore islands – differences between species and influence of nesting habitat. Parasitology 141, 399410.
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at
Robinson, R. (2016). BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO Research Report 407). BTO, Thetford.
Václav, R., Betáková, T. and Švancarová, P., Pérez-Serrano, J., Criado-Fornelio, Á., Škorvanovzá, L., Valera, F. (2016). Nest ecology of blood parasites in the European roller and its ectoparasitic carnid fly. Experimental Parasitology 165, 7180.
Valkiūnas, G. (2005). Avian Malaria Parasites and Other Haemosporidia. CRC Press, Boca Raton.
Valkiūnas, G., Iezhova, T. A., Loiseau, C. and Sehgal, R. N. M. (2009). Nested cytochrome B polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. Journal of Parasitology 95, 15121515.
Weatherhead, P. J. and Bennett, G. F. (1991). Ecology of red-winged blackbird parasitism by haematozoa. Canadian Journal of Zoology 69, 23522359.
Yoshimura, A. Koketsu, M. Bando, H. Saiki, E. Suzuki, M. Watanabe, Y. Kanuka, H. and Fukumoto, S. (2014). Phylogenetic comparison of avian haemosporidian parasites from resident and migratory birds in northern Japan. Journal of Wildlife Diseases 50, 235242.
Zehtindjiev, P., Križanauskienė, A., Scebba, S., Dimitrov, D., Valkiūnas, G., Hegemann, A., Tieleman, B. I. and Bensch, S. (2011). Haemosporidian infections in skylarks (Alauda arvensis): a comparative PCR-based and microscopy study on the parasite diversity and prevalence in southern Italy and the Netherlands. European Journal of Wildlife Research 58, 335344.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score