Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T05:04:26.763Z Has data issue: false hasContentIssue false

Immobilization antibodies of tiger puffer Takifugu rubripes induced by i.p. injection against monogenean Heterobothrium okamotoi oncomiracidia do not prevent the infection

Published online by Cambridge University Press:  19 January 2007

N. UMEDA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, Saeki, Oita 876-1204, Japan
A. HATANAKA
Affiliation:
Central Research Laboratories, Nippon Suisan Kaisha, Ltd, 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan
N. HIRAZAWA*
Affiliation:
Central Research Laboratories, Nippon Suisan Kaisha, Ltd, 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan
*
*Corresponding author: Central Research Laboratories, Nippon Suisan Kaisha, Ltd, 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan. Tel: +81 426 56 5195. Fax: +81 426 56 5188. E-mail: n-hiraza@nissui.co.jp

Summary

We examined whether infection by the monogenean Heterobothrium okamotoi induces production of specific antibodies against oncomiracidia and their cilia, larvae on the gills, and adults on the branchial cavity wall of tiger puffer Takifugu rubripes. We also investigated whether specific antibody production participates in acquired protection against H. okamotoi. Sera from persistently infected fish immobilized H. okamotoi oncomiracidia 89 days after exposure and antibody levels (measured by enzyme-linked immunosorbent assays) in the sera against oncomiracidia and their cilia increased compared with sera from control (naïve) fish. Antibody levels in these sera against the larvae and adult stages did not increase. The number of H. okamotoi on persistently infected fish was significantly lower than for control fish (P<0·05) when persistently infected fish and control fish were exposed to oncomiracidia in the same tank. Thus tiger puffer produced specific antibodies against oncomiracidia and their cilia, and acquired partial protection against H. okamotoi. Intraperitoneal injection of proteins of sonicated oncomiracidia or their cilia with an adjuvant also produced oncomiracidium agglutination antibodies in sera from tiger puffer; the antibody levels in these sera against oncomiracidia and their cilia increased compared with sera from control fish (injection of BSA with an adjuvant) at 14, 44, and 75 days after the booster immunization. However, in a parasite challenge at 54–58 days after the booster immunization, the infection levels of fish immunized with parasites of sonicated oncomiracidia or their cilia were the same as the control fish. Western blot showed that sera from persistently infected fish and fish immunized with sonicated oncomiracidia or their cilia recognized similar antigenic bands, suggesting that tiger puffer tends to react against these antigens compared with other antigens. These results indicated that specific antibodies against these cilia and oncomiracidia induced by i.p. injection do not prevent H. okamotoi infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bondad-Reantaso, M. G., Ogawa, K., Yoshinaga, T. and Wakabayashi, H. (1995). Acquired protection against Neobenedenia girellae in Japanese flounder. Fish Pathology 30, 233238.CrossRefGoogle Scholar
Bradford, M. A. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248.CrossRefGoogle ScholarPubMed
Buchmann, K. (1993). A note on the humoral immune response of infected Anguilla anguilla against the gill monogenean Pseudodactylogyrus bini. Fish and Shellfish Immunology 3, 397399.CrossRefGoogle Scholar
Buchmann, K. (1998). Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes: Monogenea). Diseases of Aquatic Organisms 32, 195200.CrossRefGoogle ScholarPubMed
Buchmann, K. (1999). Immune mechanisms in fish skin against monogeneans – a model. Folia Parasitologica 46, 19.Google ScholarPubMed
Buchmann, K. and Bresciani, J. (1998). Microenvironment of Gyrodactylus derjavini on rainbow trout Oncorhynchus mykiss: association between mucous cell density in skin and site selection. Parasitology Research 84, 1724.CrossRefGoogle ScholarPubMed
Buchmann, K. and Bresciani, J. (1999). Rainbow trout leucocyte activity: influence on the ectoparasitic monogenean Gyrodactylus derjavini. Diseases of Aquatic Organisms 35, 1322.CrossRefGoogle ScholarPubMed
Buchmann, K. and Lindenstrom, T. (2002). Interactions between monogenean parasites and their fish hosts. International Journal for Parasitology 32, 309319.CrossRefGoogle ScholarPubMed
Chigasaki, M., Nakane, M., Ogawa, K. and Wakabayashi, H. (2000). Standardized method for experimental infection of tiger puffer Takifugu rubripes with oncomiracidia of Heterobothrium okamotoi (Monogenea: Diclidophoridae) with some data on the oncomiracidial biology. Fish Pathology 35, 215221.CrossRefGoogle Scholar
Clark, T. G., Dickerson, H. W. and Findly, R. C. (1988). Immune response of channel catfish to ciliary antigens of Ichthyophthirius multifiliis. Developmental and Comparative Immunology 12, 581594.CrossRefGoogle ScholarPubMed
Dickerson, H. W. and Clark, T. G. (1998). Ichthyophthirius multifiliis: a model of cutaneous infection and immunity in fishes. Immunological Reviews 166, 377384.CrossRefGoogle Scholar
Dickerson, H. W., Clark, T. G. and Findly, R. C. (1989). Ichthyophthirius multifiliis has membrane-associated immobilization antigens. Journal of Protozoology 36, 159164.CrossRefGoogle ScholarPubMed
Harada, Y. and Abe, T. (1994). Taxonomy and Toxicity of Imported Pufferfishes in Japan. 1st Edn. Kouseisha Kouseikaku, Tokyo. (In Japanese.)Google Scholar
Harris, P. D., Soleng, A. and Bakke, T. A. (1998). Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement. Parasitology 117, 137143.CrossRefGoogle ScholarPubMed
Hirazawa, N., Ohtaka, T. and Hata, K. (2000). Challenge trials on the anthelmintic effect of drugs and natural agents against the monogenean Heterobothrium okamotoi in the tiger puffer Takifugu rubripes. Aquaculture 188, 113.CrossRefGoogle Scholar
Hirazawa, N., Oshima, S., Mitsuboshi, T. and Hata, K. (2001). The anthelmintic effect of medium-chain fatty acids against the monogenean Heterobothrium okamotoi in the tiger puffer Takifugu rubripes: evaluation of doses of caprylic acid at different water temperatures. Aquaculture 195, 211223.CrossRefGoogle Scholar
Hirazawa, N., Oshima, S., Mitsuboshi, T. and Yamashita, S. (2003). Mucus pH of the tiger puffer Takifugu rubripes is an important factor for host identification by the monogenean Heterobothrium okamotoi. Parasitology 127, 225230.CrossRefGoogle ScholarPubMed
Koizumi, K., Levine, D. G. and Brooks, C. M. (1967). Effect of tetrodotoxin (puffer fish toxin) on the central nervous system. Neurology 17, 395404.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680.CrossRefGoogle ScholarPubMed
Lester, R. J. G. and Adams, J. R. (1974). A simple model of a Gyrodactylus population. International Journal for Parasitology 4, 497506.CrossRefGoogle ScholarPubMed
Mazzanti, C., Monni, G. and Varriale, A. M. C. (1999). Observations on antigenic activity of Pseudodactylogyrus anguillae (Monogenea) on the European eel (Anguilla anguilla). Bulletin of the European Association of Fish Pathologists 19, 5759.Google Scholar
Nakane, M., Ogawa, K., Fujita, T., Sameshima, M. and Wakabayashi, H. (2005). Acquired protection of tiger puffer Takifugu rubripes against infection with Heterobothrium okamotoi (Monogenea: Diclidophoridae). Fish Pathology 40, 95101.CrossRefGoogle Scholar
Ogawa, K. (1991). Redescription of Heterobothrium tetrodonis (Goto, 1894) (Monogenea: Diclidophoridae) and other related new species from puffers of the genus Takifugu (Teleost: Tetraodontidae). Japan Journal of Parasitology 40, 388396.Google Scholar
Ogawa, K. (1997). Copulation and egg production of the monogenean Heterobothrium okamotoi, a gill parasite of cultured tiger puffer (Takifugu rubripes). Fish Pathology 32, 219223.CrossRefGoogle Scholar
Ogawa, K. and Inouye, K. (1997). Heterobothrium infection of cultured tiger puffer Takifugu rubripes – infection experiments. Fish Pathology 32, 2127.CrossRefGoogle Scholar
Ogawa, K. and Yokoyama, H. (1998). Parasitic diseases of cultured marine fish in Japan. Fish Pathology 33, 303309.CrossRefGoogle Scholar
Richards, G. R. and Chubb, J. C. (1996). Host response to initial and challenge infections, following treatment, of Gyrodactylus bullatarudis and G. turnbulli (Monogenea) on the guppy (Poecilia reticulata). Parasitology Research 82, 242247.CrossRefGoogle Scholar
Roman, T., De Guerra, A. and Charlemagne, J. (1995). Evolution of specific antigen recognition: size reduction and restricted length distribution of the CDRH3 regions in the rainbow trout. European Journal of Immunology 25, 269273.CrossRefGoogle ScholarPubMed
Rubio-Godoy, M., Sigh, J., Buchmann, K. and Tinsley, R. C. (2003). Immunization of rainbow trout Oncorhynchus mykiss against Discocotyle sagittata (Monogenea). Diseases of Aquatic Organisms 55, 2330.CrossRefGoogle ScholarPubMed
Scott, M. E. and Robinson, M. A. (1984). Challenge infection of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata) following treatment. Journal of Fish Biology 24, 581586.CrossRefGoogle Scholar
St Louis-Cormier, E. A., Osterland, C. K. and Anderson, P. D. (1984). Evidence for a cutaneous secretory immune system in rainbow trout (Salmo gairdneri). Developmental and Comparative Immunology 8, 7180.CrossRefGoogle ScholarPubMed
Vladimirov, V. L. (1971). The immunity of fishes in the case of dactylogyrosis. Parasitologiya 5, 5158. (In Russian.)Google Scholar
Wang, G., Kim, JENG-HO, Sameshima, M. and Ogawa, K. (1997). Detection of antibodies against the monogenean Heterobothrium okamotoi in tiger puffer by ELISA. Fish Pathology 32, 179180.CrossRefGoogle Scholar
Wang, X. and Dickerson, H. W. (2002). Surface immobilization antigen of the parasitic ciliate Ichthyophthirius multifiliis elicits protective immunity in channel catfish (Ictalurus punctatus). Clinical Diagnostic Laboratory Immunology 9, 176181.Google ScholarPubMed
Yoshinaga, T. and Nakazoe, J. (1997). Acquired protection and production of immobilization antibody against Cryptocaryon irritans (Ciliophora, Hymenostomatida) in Mummichog (Fundulus heteroclitus). Fish Pathology 32, 229230.CrossRefGoogle Scholar