Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-06T22:48:42.644Z Has data issue: false hasContentIssue false

Interactions between the acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in rainbow trout: testing an exclusion hypothesis

Published online by Cambridge University Press:  06 April 2009

R. M. Bates
Affiliation:
Department of Biological Sciences, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS
C. R. Kennedy
Affiliation:
Department of Biological Sciences, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS

Summary

Rainbow trout were infected simultaneously with cystacanths of the two acanthocephalan species Pomphorhynchus laevis and Acanthocephalus anguillae in the laboratory. Infections consisted of varying proportions of the two species (from 0 to 100%) at low (20 cystacanths) and high (60 cystacanths) levels. Fish were sacrificed at 7, 56 and 112 days post-infection (p.i.) and the parasites recovered. At low-level infections there was a high degree of overlap in the range of intestine occupied by the two species (44·12 %) and no evidence for interspecific competition affecting either species. At high-level infections the establishment of both species was unaffected by the presence or number of individuals of the other species. The survivorship and the range of intestine occupied by A. anguillae were found to be reduced in the presence of P. laevis. The interaction was one-sided, as P. laevis remained unaffected by A. anguillae, and so indicated interference competition. The possibility that both intraspecific and interspecific competition are implicated in explaining the distribution of the two species in the British Isles is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, A. F. (1986). Evidence for density-dependent establishment and survival of Pomphorhynchus laevis (Muller, 1776) (Acanthocephala) in laboratory- infected Salmo gairdneri Richardson and its bearing on wild populations in Leuciscus cephalus (L.). Journal of Fish Biology 28, 659—69.Google Scholar
Bush, A. O. & Holmes, J. C. (1986). Intestinal helminths of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64, 142—52.Google Scholar
Chappell, L. H. (1969). Competitive exclusion between two intestinal parasites of the three-spined stickleback, Gasterosteus aculeatus L. Journal of Parasitology 55, 775—8.Google Scholar
Crompton, D. W. T., Arnold, S. & Walters, D. E. (1976). The number and size of ovarian balls of Moniliformis (Acanthocephala) from laboratory rats. Parasitology 73, 6572.Google Scholar
Dobson, A. P. (1985). The population dynamics of competition between parasites. Parasitology 66, 317—47.CrossRefGoogle Scholar
Ewald, J. A. & Nickol, B. B. (1989). Availability of caecal habitat as a density-dependent limit on survivorship of Leptorhynchoides thecatus in green sunfish, Lepomis cyanellus. Parasitology 98, 447—50.Google Scholar
Grey, A. J. & Hayunga, E. G. (1980). Evidence for alternative site selection by Glaridacris laruei (Cestoda: Caryophyllidae) as a result of interspecific competition. Journal of Parasitology 66, 371—2.CrossRefGoogle Scholar
Hair, J. D. & Holmes, J. C. (1975). The usefulness of measures of diversity, niche width and niche overlap in the analysis of helminth communities in waterfowl. Acta Parasitologica Polonica 23, 253—69.Google Scholar
Harris, J. E. (1972). The immune response of a cyprinid fish to infections of the acanthocephalan Pomphorhynchus laevis. International Journal for Parasitology 2, 459—69.CrossRefGoogle Scholar
Hine, P. M. & Kennedy, C. R. (1974). Observations on the distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis (Muller). Journal of Fish Biology 6, 521—35.Google Scholar
Holland, C. (1984). Interactions between Moniliformis (Acanthocephala) and Nippostrongylus (Nematoda) in the small intestine of laboratory rats. Parasitology 88, 303—15.Google Scholar
Holland, C. (1987). Interspecific effects between Moniliformis (Acanthocephala), Hymenolepis (Cestoda) and Nippostrongylus (Nematoda) in the laboratory rat. Parasitology 94, 567—81.Google Scholar
Holmes, J. C. (1961). Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). I. General effects and comparison with crowding. Journal of Parasitology 47, 209—16.Google Scholar
Holmes, J. C. (1962 a). Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). II. Effects on growth. Journal of Parasitology 48, 8796.CrossRefGoogle ScholarPubMed
Holmes, J. C. (1962 b). Effects of concurrent infections on Hymenolepis diminuta and Moniliformis dubius (Acanthocephala). III. Effects in hamsters. Journal of Parasitology 48, 97100.CrossRefGoogle Scholar
Kennedy, C. R. (1985). Site aggregation by species of Acanthocephala in fish, with special reference to eels, Anguilla anguilla. Parasitology 90, 375—90.Google Scholar
Kennedy, C. R., Bates, R. M. & Brown, A. F. (1989). Discontinuous distributions of the fish acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in Britain and Ireland: an hypothesis. Journal of Fish Biology 34, 607—19.Google Scholar
Kennedy, C. R., Bush, A. O. & Aho, J. M. (1986). Patterns in helminth communities: why are fish and birds different? Parasitology 93, 205—15.CrossRefGoogle ScholarPubMed
Kennedy, C. R. & Moriarty, C. (1987). Co-existence of congeneric species of Acanthocephala: Acanthocephalus lucii and A. anguillae in Anguilla anguilla in Ireland. Parasitology 95, 301—10.Google Scholar
Mapes, C. J. & Coop, R. L. (1971). Effect of concurrent and terminated infections of Haemonchus contortus on the development and reproductive capacity of Nematodirus battus. Journal of Comparative Pathology 81, 479—92.CrossRefGoogle ScholarPubMed
Silver, B. B., Dick, T. A. & Welch, H. E. (1980). Concurrent infections of Hymenolepis diminuta and Trichinella spiralis in the rat intestine. Journal of Parasitology 66, 786—91.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. San Francisco: W. H. Freeman & Co.Google Scholar
Stock, T. M. & Holmes, J. C. (1987). Dioecocestus asper (Cestoda: Dioecocestidae): an interference competitor in an enteric community. Journal of Parasitology 73, 1116—23.Google Scholar
Stock, T. M. & Holmes, J. C. (1988). Functional relationships and microhabitat distributions of enteric helminths of grebes (Podicipedidae): the evidence for interactive communities. Journal of Parasitology 74, 214—27.CrossRefGoogle ScholarPubMed
Taraschewski, H. (1988). Host-parasite interface of fish acanthocephalans. I. Acanthocephalus anguillae (Palaeacanthocephala) in naturally infected fishes: LM and TEM investigations. Diseases of Aquatic Organisms 4, 109—19.Google Scholar
Uglem, G. L. & Beck, S. M. (1972). Habitat specificity and correlated aminopeptidase activity in the acanthocephalans Neoechinorhynchus cristatus and N. crassus. Journal of Parasitology 58, 911—20.CrossRefGoogle Scholar
Uznanski, R. L. & Nickol, B. B. (1982). Site selection, growth, and survival of Leptorhynchoides thecatus (Acanthocephala) during the prepatent period in Lepomis cyanellus. Journal of Parasitology 68, 686—90.Google Scholar
Wanstall, S. T., Robotham, P. W. J. & Thomas, J. S. (1986). Pathological changes induced by Pomphorhynchus laevisMuller (Acanthocephala) in the gut of rainbow trout, Salmo gairdneri Richardson.Zeitschrift für Parasitenkunde 72, 105—14.Google Scholar