Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T12:22:23.942Z Has data issue: false hasContentIssue false

Karyotype variability in Trypanosoma rangeli

Published online by Cambridge University Press:  06 April 2009

J. Henriksson
Affiliation:
Department of Medical Genetics, Biomedical Center, Uppsala University, Box 589, S-751 23 Uppsala, Sweden
A. Solari
Affiliation:
Departamento de Bioquimica, Division de Ciencias Medicos Norte, Universidad de Chile, Santiago, Chile
M. Rydåker
Affiliation:
Department of Medical Genetics, Biomedical Center, Uppsala University, Box 589, S-751 23 Uppsala, Sweden
O. E. Sousa
Affiliation:
Centro de Investigacióne y Diagnóstico de Enfermedades Parasitarias (CIDEP), Universidad de Panamá, Panama City, Panama
U. Pettersson
Affiliation:
Department of Medical Genetics, Biomedical Center, Uppsala University, Box 589, S-751 23 Uppsala, Sweden

Summary

The molecular karyotypes of several different protozoan parasites show high intra-species variation, including different kinetoplastids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp. In this study, the molecular karyotype of Trypanosoma rangeli was examined. To evaluate potential intra-species molecular karyotype variations, 16 different samples were studied by pulsed field gel electrophoresis (PFGE) followed by ethidium bromide staining and hybridizations with 6 different probes. The result showed that different T. rangeli populations are highly polymorphic regarding the molecular karyotype, and thus suggests that PFGE analysis can be used for classification of different T. rangeli isolates. In addition, the molecular karyotype of T. rangeli was compared to molecular karyotypes of other kinetoplastids, and was shown to be distinctly different from that of T. cruzi, but shows some similarities with the karyotype described for T. brucei. Among the probes used one was identified as highly polymorphic, and thus informative for studies of different T. rangeli populations, and another was useful for differentiation between T. rangeli and T. cruzi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, M. I., Momen, H. & Traub, C. Y. (1993). Trypanosoma rangeli: Sequence analysis of β-tubulin gene suggests closer relationship to Trypanosoma brucei than to Trypanosoma cruzi. Acta Tropica 53, 99105.CrossRefGoogle ScholarPubMed
Bastien, P., Blaineau, C. & Pagès, M. (1992). Molecular karyotype analysis in Leishmania. In Subcellular Biochemistry, Vol 18 (ed. Avila, J. L. & Harris, J. R.), pp. 131187. New York: Plenum Press.Google Scholar
Bontempi, E. J., Bua, J., Åslund, L., Porcel, B., Segura, E. L., Henriksson, J., Örn, A., Pettersson, U. & Ruiz, A. M. (1993). Isolation and characterization of a gene from Trypanosoma cruzi encoding a 46-kilodalton protein with homology to human and rat tyrosine aminotransferase. Molecular and Biochemical Parasitology 59, 253–62.Google Scholar
Buschiazzo, A., Cremona, M. L., Campetella, O., Frasch, A. c. c. & Sanchez, D. o. (1993). Sequence of a Trypanosoma rangeli gene closely related to Trypanosoma cruzi trans-sialidase. Molecular and Biochemical Parasitology 62, 115–16.Google Scholar
D'allessandro, A. (1976). Biology of Trypanosoma (Herpetosoma) rangeli Tejera, 1920. In Biology of Kinetoplastida (ed. Lumsden, W. H. R. & Evans, D. A.), pp. 328403. London: Academic Press.Google Scholar
D'allessandro, A. & Prado, C. E. D. (1977). Search for Trypanosoma rangeli in endemic areas of Trypanosoma cruzi in Argentina and Brazil. American Journal of Tropical Medicine and Hygiene 26, 623–7.Google Scholar
Gottesdiener, K., Garciá-Noveros, J., Lee, M. G. -S. & Van Der Ploeg, L. H. T. (1990). Chromosome organization of the protozoan Trypanosoma brucei. Molecular and Cellular Biology 10, 6079–83.Google ScholarPubMed
Grögl, M. & Kuhn, R. (1984). Identification of antigens of culture forms of Trypanosoma cruzi and Trypanosoma rangeli recognised by sera from patients with chronic Chagas' disease. Journal of Parasitology 70, 822–4.Google Scholar
Henriksson, J., Åslund, L., Macina, R. A., Franke De Cazzulo, B., Cazzulo, J. J., Frasch, A. C. C. & Pettersson, U., (1990). Chromosomal localization of seven cloned antigen genes provides evidence of diploidy and further demonstration of karyotype variability in Trypanosoma cruzi. Molecular and Biochemical Parasitology 42, 213–23.Google Scholar
Henriksson, J., Pettersson, U. & Solari, A. (1993). Trypanosoma cruzi: correlation between karyotype variability and isoenzyme classification. Experimental Parasitology 77, 334–48.CrossRefGoogle ScholarPubMed
Henriksson, J., Porcel, B. M., Rydåker, M., Ruiz, A., Sabaj, V., Galanti, N., Cazzulo, J. J., Frasch, A. C. C. & Pettersson, U. (1995). Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. Molecular and Biochemical Parasitology 73, 6374.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals: a Zoological Monograph, Oxford: Blackwell Scientific Publications.Google Scholar
Holguin, A. F., Saravia, N. G. & D'alessandro, A. (1987). Lack of enzyme polymorphism in Trypanosoma rangeli stocks from sylvatic and domiciliary transmission cycles in Colombia. American Journal of Tropical Medicine and Hygiene 36, 53–8.CrossRefGoogle ScholarPubMed
Ibañez, C. F., Affranchino, J. L., Macina, R. A., Reyes, M. B., Leguizamon, S., Camargo, M. E., Åslund, L., Pettersson, U. & Frasch, A. C. C. (1988). multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Molecular and Biochemical Parasitology 30, 2734.CrossRefGoogle ScholarPubMed
Kreutzer, R. D. & souza, O. E. (1981). Biochemical characterization of Trypanosoma ssp. by isoenzyme electrophoresis. American Journal of Tropical Medicine and Hygiene 30, 308–17.Google Scholar
Lanzer, M., De Bruin, D., Wertheimer, S. & Ravetch, J. V. (1994). Organization of chromosomes from Plasmodium falciparum: A model for generating karyotypic diversity. Parasitology Today 10, 114–16.Google Scholar
Macedo, A. M., Vallejo, G. A., Chiari, E. & Pena, S. D. J. (1993). DNA fingerprinting reveals relationships between strains of Trypanosoma rangeli and Trypanosoma cruzi. In DNA Fingerprinting: State of the Science (ed. Pena, S. D. J., Chakraborty, R., Epplen, J. T. & Jeffreys, A. J.), pp. 321329. Basel: Birkhæuser Verlag.CrossRefGoogle Scholar
Miles, M. A., Arias, J. R., Valente, S. A. S., Naiff, R. D., Souza, A. A. D., Lima, J. A. N. & Cedillos, R. A. (1983). Vertebrate hosts and vectors of Trypanosoma rangeli in the Amazon basin of Brazil. American Journal of Tropical Medicine and Hygiene 32, 1251–9.Google Scholar
Murthy, V. K., Dibbern, K. M. & Campbell, D. A. (1992). PCR amplification of mini-exon genes differentiates Trypanosoma cruzi from Trypanosoma rangeli. Molecular and Cellular Probes 6, 237–43.Google Scholar
Myler, p. J. (1993). Molecular variation in trypanosomes. Acta Tropica 53, 205–25.Google Scholar
Schottelius, J. (1987). Neuraminidase fluorescence test for the differentiation of Trypanosoma cruzi and Trypanosoma rangeli. Tropical Medicine and Parasitology 38, 323–7.Google Scholar
Schottelius, J. & Müller, v. (1984). Interspecific differentiation of Trypanosoma cruzi, Trypanosoma conorhini and Trypanosoma rangeli by lectins in combination with complement. Acta Tropica 41, 2938.Google Scholar
Sousa, O. E. (1966). Trypanosoma rangeli in Panamá. In The Thirty-Seventh Annual Report of the Work and Operation of Gorgas Memorial Laboratory, pp. 1617. Washington: U.S. Printing Office.Google Scholar
Steindel, M., Pinto, J. C., Toma, H. K., Mangia, R. H., Ribeiro, R. R. & Romanha, A. J. (1991). Trypanosoma rangeli (Tejera, 1920) isolated from a sylvatic rodent (Echimys dasythrix) in Santa Catarina Island, Santa Catarina State: First report of this trypanosome in southern Brazil. Memorias do Institute Oswaldo Cruz 86, 73–9.Google Scholar
Steindel, M., Murta, S. M., Carvalho-Pinto, J. C., Grinnard, C. E. & Romanha, A. J. (1992). The isozyme pattern of strains of T. rangeli from different geographical regions. Memorias do Institute Oswaldo Cruz 87 (Suppl. 2), 244.Google Scholar
Van Der Ploeg, L. H. T., Cornelissen, A. W. C. A., Barry, J. D. & Borst, P. (1984). Chromosome of Kinetoplastida. The EMBO Journal 3, 3109–15.CrossRefGoogle ScholarPubMed
Zeledón, R. (1965). Trypanosoma rangeli en glándulas salvales de Rhodnius pallescens de Panamá. Revista de Biologia Tropical 13, 157–9.Google Scholar