Skip to main content Accessibility help

Low fertility, fecundity and numbers of mated female offspring explain the lower reproductive success of the parasitic mite Varroa destructor in African honeybees

  • Beatrice T. Nganso (a1) (a2), Ayuka T. Fombong (a1), Abdullahi A. Yusuf (a2), Christian W. W. Pirk (a2), Charles Stuhl (a3) and Baldwyn Torto (a1) (a2)...


Although Varroa destructor is the most serious ecto-parasite to the honeybee, Apis mellifera L., some honeybee populations such as Apis mellifera scutellata in Kenya can survive mite infestations without treatment. Previously, we reported that grooming behaviour could be a potential tolerant mechanism expressed by this honeybee subspecies towards mite infestation. However, both hygienic and grooming behaviours could not explain the lower mite-infestation levels recorded in these colonies. Here, we investigated the involvement of other potential resistant mechanisms including suppression of mite reproduction in worker brood cells of A. m. scutellata to explain the low mite numbers in their colonies. High infertility rates (26–27%) and percentages of unmated female offspring (39–58%) as well as low fecundity (1.7–2.2, average offspring produced) were identified as key parameters that seem to interact with one another during different seasons to suppress mite reproduction in A. m. scutellata colonies. We also identified offspring mortality in both sexes and absence of male offspring as key factors accounting for the low numbers of mated daughter mites produced in A. m. scutellata colonies. These results suggest that reduced mite reproductive success could explain the slow mite population growth in A. m. scutellata colonies.


Corresponding author

Author for correspondence: Baldwyn Torto, E-mail:


Hide All
Alattal, Y, Rosenkranz, P and Zebitz, CPW (2006) Reproduction of Varroa destructor in sealed worker bee brood cells of Apis mellifera carnica and Apis mellifera syriaca in Jordan. Mitteilungen der Deutschen Gesellschaft fűr Allgemeine und Angewandte Entomologie 15, 315319.
Annoscia, D, et al. (2015) Mite infestation during development alters the in-hive behaviour of adult honeybees. Apidologie 46, 306314.
Ardestani, MM (2015) Investigating the influence of postcapping period on Varroa mite infestation. Journal of Apicultural Research 54, 335341.
Aronstein, KA, et al. (2012) How Varroa parasitism affects the immunological and nutritional status of the honeybee, Apis mellifera. Insects 3, 601615.
Boecking, O and Spivak, M (1999) Behavioral defenses of honeybees against Varroa Jacobsoni Oud. Apidologie 30, 141158.
Brettell, LE and Martin, SJ (2017) Oldest Varroa tolerant honeybee population provides insight into the origins of the global decline of honeybees. Scientific Reports 7, 17.
Calderón, RA, et al. (2010) Reproductive biology of Varroa destructor in Africanized honeybees (Apis mellifera). Experimental and Applied Acarology 50, 281297.
Calderón, RA, Urena, S and van Veen, JW (2012) Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honeybees. Experimental and Applied Acarology 56, 297307.
de Guzman, LI, Rinderer, TE and Frake, AM (2008) Comparative reproduction of Varroa destructor in different types of Russian and Italian honeybee combs. Experimental and Applied Acarology 44, 227238.
Donzé, G and Guerin, PM (1994) Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood. Behavioral Ecology and Sociobiology 34, 305319.
Donze, G, et al. (1996) Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecological Entomology 21, 1726.
Francis, RM, Nielsen, SL and Kryger, P (2013) Varroa-Virus interaction in collapsing honeybee colonies. PLoS ONE 8, e57540.
Fries, I, Camazine, S and Sneyd, J (1994) Population dynamics of Varroa jacobsoni: a model and a review. Bee World 75, 528.
Fries, I, et al. (1996) Grooming behavior and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica. Apidologie 27, 311.
Fuchs, S and Langenbach, K (1989) Multiple infestation of Apis mellifera L. brood cells and reproduction in Varroa jacobsoni Oud. Apidologie 20, 257266.
Harbo, JR and Harris, JW (1999) Selecting honeybees for resistance to Varroa jacobsoni. Apidologie 30, 183196.
Harris, JW, et al. (2003) Variable population growth of Varroa destructor (Mesostigmate: Varroidae) in colonies of honeybees (Hymenoptera) during a 10-year period. Environmental Entomology 32, 13051312.
Hepburn, HR and Radloff, SE (1988) Honeybees of Africa. Berlin, Heidelberg, New York: Springer Verlag.
Ifantidis, MD (1983) Ontogenesis of the mite Varroa jacobsoni in worker and drone honeybee brood cells. Journal of Apicultural Research 22, 200206.
Kielmanowicz, MG, et al. (2015) Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLoS Pathogens 11, e1004816.
Lee, KV, et al. (2010) Practical sampling plans for Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies and apiaries. Journal of Economic Entomology 103, 10391050.
Locke, B and Fries, I (2011) Characteristics of honeybee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42, 533542.
Locke, B, et al. (2012) Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honeybee populations. Ecology and Evolution 2, 11441150.
Lodesani, M, Crailsheim, K and Moritz, RFA (2002) Effect of some characters on the population growth of mite Varroa jacobsoni in Apis mellifera L. colonies and results of a bi-directional selection. Journal of Applied Entomology 126, 130137.
Martin, SJ (1994) Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Experimental and Applied Acarology 18, 87100.
Martin, SJ (1995) Reproduction of Varroa jacobsoni in cells of Apis mellifera containing one or more mother mites and the distribution of these cells. Journal of Apicultural Research 34, 187196.
Martin, SJ (2001) Varroa destructor reproduction during the winter in Apis mellifera colonies in UK. Experimental and Applied Acarology 25, 321325.
Martin, SJ and Kryger, P (2002) Reproduction of Varroa destructor in South African honeybees: does cell space influence Varroa male survivorship? Apidologie 33, 5161.
Martin, SJ and Medina, LM (2004) Africanized honeybees have unique tolerance to Varroa mites. Trends in Parasitology 20, 112114.
Medina, LM and Martin, SJ (1999) A comparative study of Varroa jacobsoni reproduction in worker cells of honeybees (Apis mellifera) in England and Africanized bees in Yucatan, Mexico. Experimental and Applied Acarology 23, 659667.
Mondragón, L, Martin, S and Vandame, R (2006) Mortality of mite offspring: a major component of Varroa destructor resistance in a population of Africanized bees. Apidologie 37, 6774.
Muli, E, et al. (2014) Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honeybee (Apis mellifera) populations in East Africa. PLoS ONE 9, e94459.
Nazzi, F and Le Conte, Y (2016) Ecology of Varroa destructor, the major ectoparasite of the Western honeybee, Apis mellifera. Annual Review of Entomology 61, 417432.
Neumann, P and Carreck, NL (2010) Honeybee colony losses. Journal of Apicultural Research 49, 16.
Nganso, BT, et al. (2017) Hygienic and grooming behaviors in African and European honeybees – New damage categories in Varroa destructor. PLoS ONE 12, e0179329.
Oddie, MAY, Dahle, B and Neumann, P (2017) Norwegian honeybees surviving Varroa destructor mite infestations by means of natural selection. PeerJ Preprints 5, e3956.
Peng, YS, et al. (1987) The resistance mechanism of the Asian honeybee, Apis cerana fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology 49, 5460.
Pirk, CW, Crewe, RM and Moritz, RF (2017) Risks and benefits of the biological interface between managed and wild bee pollinators. Functional Ecology 31, 4755.
Pirk, CWW, et al. (2013) Statistical guidelines for Apis mellifera research. Journal of Apicultural Research 52, 124.
Raina, SK and Kimbu, DM (2005) Variations in races of the honeybee Apis Mellifera (Hymenoptera: Apidae) in Kenya. International Journal of Tropical Insect Science 25, 281291.
Ramsey, SD and VanEngelsdorp, D (2017) Varroa destructor Feed Primarily on Honeybee fat Body not Haemolymph. In Simone-Finstrom, M (ed). Proceedings of the American Bee Research Conference; Paper presented at the 2017 American Bee Research Conference (ABRC). Galveston TX: Galveston Island Convention Center, Bee World.
Rath, W (1999) Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 30, 97110.
R Development Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Ritter, W (1981) Varroa disease of the honeybee Apis mellifera. Bee World 62, 141153.
Rosenkranz, P, Aumeier, P and Ziegelmann, B (2010) Biology and control of Varroa destructor. Journal of Invertebrate Pathology 103, S96–S119.
Smith, KM, et al. (2014) Pathogens, pests, and economics: drivers of honeybee colony declines and losses. EcoHealth 10, 434445.
Strauss, U, et al. (2013) Seasonal prevalence of pathogens and parasites in the Savannah honeybee (Apis mellifera scutellata). Journal of Invertebrate Pathology 114, 4552.
Strauss, U, et al. (2016) Resistance rather than tolerance explains survival of Savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor. Parasitology 143, 374387.
VanDooremalen, C, et al. (2012) Winter survival of individual honeybees and honeybee colonies depends on level of Varroa destructor infestation. PLoS ONE 7, e36285.
Wendling, S, et al. (2014) Fertilization and fertility in the female of Varroa destructor, a key point for the parasite population dynamics. Apidologie 45, 722732.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed